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Introducción a la transversalidad

de subvariedades

Proyectos de Investigación I y II

Ozmar Benjamı́n Hernández Alvarado
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Introducción

En este trabajo se mostrarán varias definiciones y conceptos necesarios

para que el lector pueda comprender los conceptos básicos de la topoloǵıa

diferencial en el espacio euclidiano. En particular, se introducirán algunas

propiedades de suavidad de funciones, las cuales resultan de gran relevancia

para el desarrollo posterior de la teoŕıa.

Se incluirán también ejemplos concretos que ayudarán a ilustrar la apli-

cación de los conceptos y técnicas desarrollados, proporcionando una visión

más clara y accesible de la teoŕıa. Algunos de ellos fueron tomados y resuel-

tos de los ejercicios del libro de Guillemin, V. y Pollack.
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Let  be a compact Riemann surface without boundary and  a conformal
minimal immersion neither holomorphic nor antiholomorphic with constant Kähler angle. The
authors establish a Simons-type integral inequality for  (Theorem 3.4). In this paper, the
main result is to determine all the closed minimal surfaces with the square norm of the
second fundamental form satisfying a pinching condition. Precisely, they prove the following
theorem.
   Main Theorem. Let  be a compact Riemann surface without boundary and  be
a conformal minimal immersion neither holomorphic nor antiholomorphic. If its Kähler angle 
is constant and the square norm  of the second fundamental form satisfies the pinching
condition

on , where  is a globally defined invariant relative to the first and second fundamental

M f: M → CPn

M

M f: M → CPn

θ

S

− (1 + 2 θ)S + 15 θ θ − 8κ ≤ 0
3
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M κ



forms, then up to a rigid motion,  is one of the following:

(i)
 with , ,  and , or

(ii)
 with , ,  and , or

(iii)
 with , ,  and , or

(iv)
 with , ,  and , or

(v)
 with , ,  and .

   Here  is the Gaussian curvature of .
Reviewed by Josué Meléndez

References
1. Bando S., Ohnita Y., Minimal 2-spheres with constant curvature in . J. Math. Soc.

Japan, 1987, 39(3): 477–487 MR0900981
2. Bolton J., Jensen G.R., Rigoli M., Woodward L.M., On conformal minimal immersions of 

into . Math. Ann., 1988, 279(4): 599–620 MR0926423
3. Chen B.Y., Ogiue K., On totally real submanifolds. Trans. Amer. Math. Soc., 1974, 193:

257–266 MR0346708
4. Chern S., do Carmo M., Kobayashi S., Minimal submanifolds of a sphere with second

fundamental form of constant length. In: Functional Analysis and Related Fields, New
York–Berlin: Springer, 1970: 59–75 MR0273546

5. Chern S., Wolfson J., Minimal surfaces by moving frames. Amer. J. Math., 1983, 105(1): 59–
83 MR0692106

6. Jiao X.X., Peng J.G., Minimal 2-spheres in a complex projective space. Di"erential Geom.
Appl., 2007, 25(5): 506–517 MR2351427

7. Kenmotsu K., Masuda K., On minimal surfaces of constant curvature in two-dimensional
complex space form. J. Reine Angew. Math., 2000, 523: 69–101 MR1762956

8. Li Z.Q., Counterexample to the conjecture on minimal  in  with constant Kähler
angle. Manuscripta Math., 1995, 88(4): 417–431 MR1362928

9. Ludden G., Okumura M., Yano K., A totally real surface in  that is not totally geodesic.
Proc. Amer. Math. Soc., 1975, 53(1): 186–190 MR0380683

10. Mo X.H., Minimal surfaces with constant Kähler angle in complex projective spaces. Proc.
Amer. Math. Soc., 1994, 121(2): 569–571 MR1185271

11. Ogata T., Curvature pinching theorem for minimal surfaces with constant Kähler angle in

f(M)

f( ) ⊂ CT 2 P2 κ = 1
8 S = 2 cos θ = 0 K = 0

f( ) ⊂ CS2 P4 κ = 0 S = 4
3 cos θ = 0 K = 1

3

f( ) ⊂ CS2 P2 κ = 0 S = 0 cos θ = 0 K = 1

f( ) ⊂ CS2 P3 κ = 0 S = 48
49 cos θ = 1

7 K = 4
7

f( ) ⊂ CS2 P3 κ = 0 S = 48
49 cos θ = − 1

7 K = 4
7

K M

CP n

S2

CP n

S2 CP n

CP 2



complex projective spaces. Tohoku Math. J. (2), 1991, 43(3): 361–374 MR1117210
12. Ogata T., Curvature pinching theorem for minimal surfaces with constant Kähler angle in

complex projective spaces, II. Tohoku Math. J. (2), 1993, 45(2): 271–283 MR1215929
13. Ohnita Y., Minimal surfaces with constant curvature and Kähler angle in complex space

forms. Tsukuba J. Math., 1989, 13(1): 191–207 MR1003602
14. Simons J., Minimal varieties in Riemannian manifolds. Ann. of Math. (2), 1968, 88: 62–105

MR0233295
15. Tanno S., Compact complex submanifolds immersed in complex projective spaces. J.

Di"erential Geometry, 1973, 8: 629–641 MR0339021
16. Wang J., Fei J., Jiao X.X., Simons-type inequalities for minimal surfaces with constant

Kähler angle in a complex hyperquadric. Di"erential Geom. Appl., 2023, 88: Paper No.
102001, 21 pp. MR4562764

17. Wang J., Fei J., Xu X.W., Pinching for holomorphic curves in a complex Grassmann
manifold . Di"erential Geom. Appl., 2022, 80: Paper No. 101840, 15 pp.
MR4351003

This list reflects references listed in the original paper as accurately as possible with no
attempt to correct error.

© Copyright 2025, American Mathematical Society
Privacy Statement

G(2, n; C)







Journal of Mathematical Analysis and Applications
 

Some remarks on warped products
--Manuscript Draft--

 

Manuscript Number:

Article Type: Regular Article

Keywords: warped product;  Ricci curvature;  integral inequality;  normal hypersurfaces

Corresponding Author: Josué Meléndez Sánchez

Universidad Autónoma Metropolitana Iztapalapa

Mexico City, MEXICO

First Author: Josué Meléndez Sánchez

Order of Authors: Josué Meléndez Sánchez

Eduardo Rodríguez Romero

Abstract: We establish an integral inequality for the Ricci curvature of some class of warped

products $\widebar{M}=M\times_fN$, where the equality holds if and only if

$\widebar{M}$ is simply a Riemannian product. We also give a sufficient condition for

the intersection of a warped product $M=\mathbb{R}\times_fP$ with a totally geodesic

hypersurface $N$ in an arbitrary Riemannian space to be a totally geodesic slice of

$M$.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



SOME REMARKS ON WARPED PRODUCTS

JOSUÉ MELÉNDEZ AND EDUARDO RODRÍGUEZ-ROMERO

Abstract. We establish an integral inequality for the Ricci curvature of some
class of warped products M = M ⇥f N , where the equality holds if and only if
M is simply a Riemannian product. We also give a sufficient condition for the
intersection of a warped product M = R⇥f P with a totally geodesic hypersurface
N in an arbitrary Riemannian space to be a totally geodesic slice of M .

1. Introduction and main results

One of the most useful extensions of the Cartesian product is the notion of warped
product, first defined in [2, Section 7]. As a generalization of the simple product of
Riemannian manifolds, the warped products have given rise to a large family of in-
teresting and useful examples of Riemannian manifolds, including some fundamental
ones in general relativity (see [8] as a reference). Naturally, the study of submanifolds
in warped products also has been a very active field in differential geometry (just to
mention some works about it, see [1, 3] and the references therein).

Recently in [5], Meléndez and Hernández obtained an integral inequality of the
Ricci curvature for the warped product S

1
⇥f N , which gives a characterization of

the simple product S
1
⇥N . More precisely, they proved the following:

Theorem 1. Let N be a compact Riemannian manifold. Consider the warped product
M = S

1
⇥f N and let @t be the coordinate vector field on S

1. Then
Z

M

Ric(@t, @t) dM
n
� 0,

where Ric denotes the Ricci curvature on M . Moreover, equality holds if and only if
M is simply a Riemannian product.

Following the main idea of the proof (see Theorem 4 in [5]), we establish the next
integral inequality for a more general warped product M ⇥f N .

Date: July 2, 2025.
2020 Mathematics Subject Classification. 53C40; 53C42.
Key words and phrases. warped product, Ricci curvature, integral inequality, normal

hypersurfaces.
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2 MELÉNDEZ AND RODRÍGUEZ-ROMERO

Theorem 2. Let M and N be Riemannian manifolds, where M is Ricci flat and
dim(M) = m. If the warped product M = M ⇥f N is compact, then

mX

k=1

Z

M

Ric(Ek, Ek) dM � 0,

where Ric denotes the Ricci curvature on M and {E1, . . . , Em} is a frame on M .
Moreover, equality holds if and only if M is a Riemannian product.

Example 1. Consider the warped product
M

n
= T

n�k
⇥f S

k

of the (n�k)-dimensional flat torus T n�k
= S

1
⇥ · · ·⇥S

1 and the standard k-sphere
S
k. Since Ricci tensor of T n�k is identically zero, we have

n�kX

k=1

Z

M

Ric(@tk , @tk) dM � 0,

where @tk 2 TS
1. In particular, if k = n� 1 we obtain

M = S
1
⇥f S

n�1

It follows from Theorem 2 thatZ

M

Ric(@t, @t) dM � 0,

where @t 2 TS
1. Moreover, equality holds if and only if M is isometric to a Clifford

hypersurface S
1
⇥ S

n�1 (see Theorem 4 in [5] and Theorem 4.1 in [7]).

Now consider the class of warped products
M

n
= R⇥f P

n�1
,

where P is a Riemannian manifold. Given t 2 R, the slice ⌃t is defined as the
hypersurface ⌃t = {t} ⇥ P of M . Note that ⌃t is a totally umbilical hypersurface
with constant mean curvature H(t) = f

0
(t)/f(t). Recall that the height function

h : ⌃ ! R of a hypersurface ⌃ of M is defined by h(p) = ⇡R(p), p 2 ⌃, where
⇡R : M ! R is the projection onto the first factor.

For the next results we need the concept of normal submanifolds (see Section 4
in [6] for more details).

Definition 1. Let M and N be submanifolds of a Riemannian manifold M . We say
that M and N are normal submanifolds in M if

(a) M \N is a submanifold of M .
(b) TpM \ T

?
p (M \N) ⇢ T

?
p N for all p 2 M \N .
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Remark 1. Condition (b) allows us to interchange the roles of M and N , meaning that
(b) is equivalent to TpN\T

?
p (M\N) ⇢ T

?
p M for all p 2 M\N . In addition, it is not

difficult to verify that if M and N are hypersurfaces, where ⌘ and ⇠ are the respective
unit normal vector fields, then normality is equivalent to have � = ](⌘, ⇠) = ⇡

2 along
M \N . In this case M and N intersect transversally, thus M \N is a submanifold
of M of codimension 2.

Let M = R ⇥f P
n�1. We now consider an isometric immersion F : M ! M

n+1

into a Riemannian manifold M
n+1. If N is a totally geodesic hypersurface of M , the

next result gives us sufficient conditions for M \ N to be a totally geodesic slice of
M , provided that M and N are normal hypersurfaces in M .
Theorem 3. Let Mn+1 be a Riemannian manifold, N a totally geodesic hypersurface
of M and M

n
= R ⇥f P

n�1 a warped product hypersurface in M with H
0
(t) � 0,

where H(t) = f
0
(t)/f(t). Suppose that M and N are normal hypersurfaces such

that ⌃n�1
= M \ N is a complete parabolic submanifold of M with Ricci curvature

bounded from below and bounded height function h : ⌃ ! R. Then ⌃ is a totally
geodesic slice of M .

The proof of Theorem 3 is an application of the Omori–Yau maximum principle
to h. The next corollary is a more practical version of the above theorem.
Corollary 1. Let Mn+1 be a Riemannian manifold, N a totally geodesic hypersurface
of M and M

n
= R ⇥f P

n�1 a warped product hypersurface in M with H
0
(t) � 0.

Suppose that M and N are normal hypersurfaces such that ⌃n�1
= M\N is compact.

Then ⌃ is a totally geodesic slice of M and P is compact.
Example 2. Consider a rotation hypersurface M

n in the Euclidean space Rn+1. We
denote by (x1, . . . , xn+1) the coordinates in Rn+1, and we parametrize M by

'(t, s1, . . . , sn�1) =
�
t, f(t)�(s1, . . . , sn�1)

�
,

where (t, f(t)) is the profile curve of M , with f(t) > 0 for all t, and � is a parametriza-
tion of the unit sphere S

n�1.
Observe that M has the warped product metric

h , iM = dt
2
+ f(t)

2
d�

2
n�1

where d�
2
n�1 denotes the standard round metric of the sphere S

n�1.
If we assume that H

0
(t) � 0, then, as a direct application of Corollary 1, we see

that the parallels
⌃

n�1
= M \N = {t0}⇥ f(t0)S

n�1

are totally geodesic in M if the intersection of M with the horizontal hyperplane
N =

�
(x1, . . . , xn+1) 2 Rn+1

: x1 = t0
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is normal, which only happens when f
0
(t0) = 0.

We organize the paper as follows. First we give some general preliminaries in
Section 2. Next we present the proofs of Theorems 2 and 3 in Sections 3 and 4,
respectively, where we give some notation and auxiliary results used in each proof.
Finally, in Section 5 we address some properties of the intersection of submanifolds.

2. General preliminaries

Throughout the manuscript M will always denote the ambient space, which is a
Riemannian manifold with metric h , i and Riemannian connection r. M and N also
will denote Riemannian manifolds with metrics h , iM and h , iN , and Riemannian
connections r

M and r
N , respectively.

Let f : M ! R+ be a smooth function. The warped product M = M ⇥f N is the
product manifold M ⇥N endowed with the warped metric

hX, Y i = hd⇡M(X), d⇡M(Y )iM + (f � ⇡M)
2
hd⇡N(X), d⇡N(Y )iN ,

where ⇡M and ⇡N are the projections of M onto the corresponding factor. In a
compact way we write

h , i = h , iM + f
2
h , iN .

The function f is called the warping function of M . Notice that if f is constant,
then M ⇥f N is the Riemannian product M ⇥N where N has the metric f

2
h , iN .

Let f : M ! R be a smooth function. We denote by grad f the gradient of f , and
by Hess f the Hessian of f , which are defined by

df(X) = hgrad f,Xi and Hess f(X, Y ) = hrX(grad f), Y i ,

where X, Y are vector fields in M . In addition, the Laplacian of f is considered with
the sign convention

�f = tr(Hess f),

where tr denotes the trace of a linear operator.
We use similar notation, but with a superscript, for the above differential operators

when f is a real-valued function defined on M or N . For example, we write grad
M
f ,

Hess
M
f and �

M
f .

3. Proof of Theorem 2

We denote by Ric and Ric
M the Ricci curvatures of M and M , respectively. For

the proof of Theorem 2 we need a well-known fact about warped products, and given
that it shares the same context with another fact that will be used in the proof of
Theorem 3, we present both in the following lemma (see Chapter 7 in [8]).
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Lemma 1. Let M and N be Riemannian manifolds, with n = dim(N) > 1, and let
f : M ! R+ be a smooth function. Consider the warped product M = M ⇥f N . Let
X, Y be horizontal vector fields, and let V be a vertical vector field. Then

(1) Ric(X, Y ) = Ric
M
(X, Y )�

n

f
Hess

M
f(X, Y ).

(2) rXV = rVX =
X(f)

f
V .

We also need the next technical lemma contained in Proposition 2.3 of [4] (see also
Lemma 4 of [5]).

Lemma 2. Let M and N be Riemannian manifolds, with n = dim(N), and let
f : M ! R+ be a smooth function. Consider the warped product M = M ⇥f N and
u 2 C

1
(M). Then

�u = �
M
u+

n

f

⌦
grad

M
f, grad

M
u
↵
M

+
1

f 2
�

N
u.

Proof of Theorem 2. Let {E1, . . . , Em} be an orthonormal frame in M . Since M

is Ricci flat, Lemma 1 implies
mX

k=1

Ric(Ek, Ek) = �
n

f

mX

k=1

Hess
M
f(Ek, Ek) = �

n

f
�

M
f. (1)

If we set u = ln f , we obtain

�
M
u =

mX

k=1

⌦
r

M
Ek
(grad

M
u), Ek

↵
M

=

mX

k=1

⌧
r

M
Ek

✓
gradMf

f

◆
, Ek

�

M

=
1

f
�

M
f �

1

f 2

��gradM
f
��2
M
.

(2)

Now, by using Lemma 2,

�u = �
M
u+

n

f

⌦
grad

M
f, grad

M
u
↵
M

= �
M
u+

n

f 2

��gradM
f
��2
M
. (3)

If we substitute (2) in (3), we find that

�u =
�

M
f

f
+ (n� 1)

 ��gradM
f
��
M

f

!2

=
�

M
f

f
+ (n� 1) kHk

2
M ,

where H =
1

f
grad

M
f . It follows from (1) that

n�u = �

mX

k=1

Ric(Ek, Ek) + n(n� 1) kHk
2
M . (4)
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By the compactness of M , we can integrate both sides of (4) to obtain
mX

k=1

Z

M

Ric(Ek, Ek) dM = n(n� 1)

Z

M

kHk
2
M dM � 0.

Observe that equality holds if and only if H = 0, which means that f is constant. ⇤

4. Proof of Theorem 3

We say that M is parabolic if the only subharmonic functions on M which are
bounded from above are the constant ones. Explicitly stated, this means that if
u 2 C

2
(M) is such that �M

u � 0 and supM u < 1, then u must be constant. Being
parabolic is equivalent to have that the only superharmonic functions on M which
are bounded from below are the constant ones, or explicitly, if u 2 C

2
(M) satisfies

�
M
u  0 and infM u > �1, then u must be constant.

It is well known that every compact manifold is parabolic. In particular, any
sphere S

n is parabolic. On the other hand, the Euclidean space Rn is parabolic if
and only if n = 1, 2. To see that Rn is not parabolic for n � 3, it is sufficient to give
an explicit example of a positive non constant superharmonic function, like the map

u(x) = (1 + kxk
2
)
�n�2

2 .

For the proof of Theorem 3 we use the following well-known principle due to H.
Omori and S. T. Yau (see [9]).

Theorem 4. Let M be a complete Riemannian manifold whose Ricci curvature is
bounded from below. Consider u 2 C

2
(M) that is bounded from below on M . Then

there exists a sequence {pj} in M such that

lim
j!1

u(pj) = inf
M

u,
��gradM

u(pj)
�� <

1

j
, �

M
u(pj) > �

1

j
. (5)

Let N be a submanifold of M . Let us denote by B
M
N the second fundamental form

of N in M , this means that

rXY = r
N
XY + B

M
N (X, Y ), X, Y 2 X(N).

If n = dim(N), the mean curvature vector of N in M is given by

H
M
N =

1

n

nX

i=1

B
M
N (Ei, Ei),

where {E1, . . . , En} is a local orthonormal frame on N . A submanifold N is said to
be totally umbilical if

B
M
N (X, Y ) = hX, Y iNH

M
N
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for every X, Y 2 X(N).
Let P

n�1 be a Riemannian manifold with metric h , iP , and consider the warped
product M

n
= R ⇥f P with its warped metric h , i = dt

2
+ f

2
h , iP . Let ⌃ be a

complete oriented hypersurface of M , where ⌘ is the unit normal vector of ⌃. Then
the shape operator of ⌃ respect to ⌘ is given by

AX = �rX⌘, where X 2 X(M).

We also need to compute the Laplacian of the height function h : ⌃ ! R (see
Proposition 2.1 of [1]). For the reader’s convenience we include a detailed proof.

Lemma 3. Let ⌃n�1 be an oriented hypersurface of Mn
= R⇥f P . Then

�
⌃
h = H(h)

�
n� 1�

��grad⌃
h
��2�

+ (n� 1)
⌦
@t,H

M
⌃

↵
, (6)

where H
M
⌃ is the mean curvature vector of ⌃ respect to M and @t is the coordinate

vector field of the first factor of M .

Proof. First note that the gradient of the projection ⇡1 : M ! R is given by grad
M
⇡1 =

@t. Thus the gradient of the height function h(p) = ⇡1(p) is given by

grad
⌃
h = (grad

M
⇡1)

>
= @

>
t = @t � h@t, ⌘i ⌘, (7)

where (·)
> denotes the projection over T⌃. On the other hand, we know that each

X 2 X(M) can be decomposed as X = hX, @ti @t + V , where V = X � hX, @ti @t. It
follows from item (2) of Lemma 1 that

r
M
X @t = hX, @ti⇠⇠⇠⇠:0

r@t@t +rV @t = H(t)V = H(t)(X � hX, @ti @t), (8)

where H(t) = f
0
(t)/f(t). Using (7) and (8) we deduce that

r
M
X (grad

⌃
h) = rX(@t � h@t, ⌘i ⌘) = H(t)(X � hX, @ti @t)�X h@t, ⌘i ⌘ � h@t, ⌘irX⌘.

If we consider X 2 X(⌃) in the above equation, by projecting over T⌃ we get

r
⌃
X(grad

⌃
h) =

�
r

M
X (grad

⌃
h)
�>

= H(h)
�
X � hX, @ti @

>
t

�
� h@t, ⌘i (rX⌘)

>

= H(h)
�
X �

⌦
X, grad

⌃
h
↵
grad

⌃
h
�
+ h@t, ⌘iAX.
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Therefore, if we consider an orthonormal frame {Ei} on ⌃, we conclude that

�
⌃
h =

n�1X

i=1

⌦
r

⌃
Ei
(grad

⌃
h), Ei

↵

=

n�1X

i=1

⇣
H(h)

�
1�

⌦
Ei, grad

⌃
h
↵2�

+ h@t, ⌘i hAEi, Eii

⌘

= H(h)
�
n� 1�

��grad⌃
h
��2�

+ (n� 1)
⌦
@t,H

M
⌃

↵
.

⇤
Proof of Theorem 3. Let M = R ⇥f P be a warped product hypersurface and
N a totally geodesic hypersurface of M , and assume that M and N are normal
hypersurfaces. Then Corollary 2 in Section 5 implies

H
M
⌃ = (H

M
N )

>
= 0 on ⌃ = M \N,

where (·)
> denotes the projection over TM . Then equation (6) yields

�
⌃
h = H(h)

⇣
n� 1�

��grad⌃
h
��2
⌘
. (9)

By the Omori-Yau maximum principle (5) we know that there exists a sequence
{pj} in ⌃ such that

lim
j!1

h(pj) = h⇤,
��grad⌃

h(pj)
��2

<
1

j2
, �

⌃
h(pj) > �

1

j
,

where h⇤ = inf⌃ h, and by the previous equation we obtain

H(h(pj))(n� 1�
��grad⌃

h(pj)
��2
) > �

1

j
,

which reduces to H(h⇤) � 0 when j ! 1, and since H
0
� 0, we get

H(h) � 0 on ⌃. (10)

Let ⌘ be the unit normal vector of ⌃ in M . As grad
⌃
h = @t � h@t, ⌘i ⌘, it follows

��grad⌃
h
��2

= 1� h@t, ⌘i
2
.

Therefore

(n� 1)�
��grad⌃

h
��2

= (n� 2) + h@t, ⌘i
2
� 0.

By combining (9) and (10), we conclude �⌃
h � 0 on ⌃, but given that sup⌃ h < 1,

the parabolicity of ⌃ implies that h is constant with H(h) = 0, and consequently ⌃

is a totally geodesic slice of M . ⇤
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5. Some properties of intersection of submanifolds

In the proof of Theorem 3 we have used the last result of this section, which deals
with a property of the normal intersection of two hypersurfaces in a Riemannian
ambient. This auxiliary result can be seen as a consequence of a general pattern
concerning the intersection of submanifolds of arbitrary codimension.

Proposition 1. Let M and N be submanifolds of a Riemannian manifold M such
that ⌃ = M \N is a submanifold of M . If N is totally umbilical in M , then

H
M
⌃ = (H

N
⌃ )

>
+ (H

M
N )

> along ⌃,

where (·)
> is the projection over TM .

Proof. Recall that for all X, Y 2 X(⌃), we have the decomposition

B
M
⌃ (X, Y ) = B

M
⌃ (X, Y ) +B

M
M (X, Y ) = B

N
⌃ (X, Y ) +B

M
N (X, Y ).

Therefore, if k = dim(⌃) and {E1, . . . , Ek} is a local orthonormal frame in ⌃, we
deduce from de umbilicity of N in M that

kH
M
⌃ =

kX

i=1

B
M
⌃ (Ei, Ei)

=

kX

i=1

B
N
⌃ (Ei, Ei) +

kX

i=1

B
M
N (Ei, Ei)�

kX

i=1

B
M
M (Ei, Ei)

= kH
N
⌃ + kH

M
N �

kX

i=1

B
M
M (Ei, Ei),

and by projecting the last equation to TM we get the desired formula. ⇤
When M and N are hypersurfaces and do not intersect “tangentially”, we obtain:

Corollary 2. Let M and N be oriented hypersurfaces of M , where ⌘ and ⇠ are their
respective unit normal vectors, and suppose that M \N 6= ;. If N is totally umbilical
in M and the angle � = \(⌘, ⇠) 2 (0, ⇡), then

H
M
⌃ =

⇣
H

N
⌃ cos(�)±H

M
N sin(�)

⌘
⌘⇤ along ⌃ = M \N,

where ⌘⇤ is the unit normal vector of ⌃ respect to M , and H
N
⌃ and H

M
N are the scalar

mean curvatures of ⌃ ⇢ N and N ⇢ M , respectively. In particular, when M and N

are normal hypersurfaces in M , we have

H
M
⌃ = (H

M
N )

>
= H

M
N ⇠

and ⌃ is totally umbilical in M .
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Proof. As M and N are hypersurfaces and � 2 (0, ⇡), necessarily M and N intersect
transversally, so ⌃ is a submanifold of M of codimension 2 (see Remark 1).

Let ⌘⇤ and ⇠⇤ be the unit normal vectors of ⌃ respect to ⌘ and ⇠, respectively,
meaning that {⌘⇤, ⌘} and {⇠⇤, ⇠} are positively oriented orthonormal bases of the
plane T

?
p ⌃ for all p 2 ⌃. Consequently the frame {⇠⇤, ⇠} is obtained by rotating the

frame {⌘⇤, ⌘} an angle �, and depending on the position of the frames, the rotation
can be clockwise or counterclockwise. Therefore we can write

⇠⇤ = cos(�)⌘⇤ ± sin(�)⌘, ⇠ = ⌥ sin(�)⌘⇤ + cos(�)⌘,

which implies

(H
N
⌃ )

>
= (H

N
⌃ ⇠⇤)

>
= H

N
⌃ cos(�)⌘⇤, (H

M
N )

>
= (H

M
N ⇠)

>
= ⌥H

M
N sin(�)⌘⇤.

Therefore, from Proposition 1 we obtain

H
M
⌃ = (H

N
⌃ )

>
+ (H

M
N )

>
=

⇣
H

N
⌃ cos(�)⌥H

M
N sin(�)

⌘
⌘⇤.

If M and N are normal hypersurfaces in M (� ⌘
⇡
2 ), then

H
M
⌃ = (H

M
N )

>
= ⌥H

M
N ⌘⇤ = H

M
N ⇠.

⇤
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