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Abstract

Given a finite commutative local ring with identity, residue field
Fp, p ≥ 2 a prime, and a length n such that gcd(p, n) = 1, linear
constacyclic codes over such rings are studied by means of idempotent
elements. Under such conditions, the present work involves both: chain
and non-chain rings.
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1 Introduction

Linear codes, cyclic and constacyclic codes over finite rings have been studied
intensively in recent years. In particular, finite chain rings have been used as
alphabets for this type of codes ([10], [3]). Constacylic codes are a generaliza-
tion of cyclic codes and have been studied in contemporary papers by several
research groups, for instance, over a finite chain ring we have the work [2],
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and some cases where the alphabet is a finite non-chain Frobenius ring were
studied in [1].

In the present work we study the structure of constacyclic codes and their
description by means of idempotent elements when the alphabet is a finite
commutative local ring R with identity and residual field Fp. The manuscript
is organized as follows: In section 2 the necessary background material is given.
In section 3 results on constacyclic codes are presented with emphasis on their
description by means of idempotents elements. Finally, in section 4 examples
illustrating the main results are presented.

2 Preliminaries

In this section definitions and basic results from algebra used in the manuscript
are recalled. We refer the reader to [7] and [8] for details. By a ring R we
mean a finite commutative ring with identity (1 ∈ R). The set of units in R is
denoted by U(R). An ideal I ofR is generated by a nonempty S ⊆ R, denoted
by I = 〈S〉, if I = {

∑m
i=1 risi | ri ∈ R, si ∈ S,m ∈ N}. If S = {s1, . . . , sk} we

write I = 〈s1, . . . , sk〉. If I is an ideal of a ring R and R is a subring of a ring
S, the ideal IS, generated by the elements of I in S, is called the extension of
the ideal I to S.

The ring R is called local if it has only one maximal ideal m. If R is a
local ring with maximal ideal m the quotient ring R/m is the residue field of
R, which is a finite field Fq, where q = pm for some prime p. This information
will be indicated by (R,m,Fq). Given a finite local ring (R,m,Fq), there is
an integer t ≥ 1 such that mt = 〈0〉 and mt−1 6= 〈0〉. Such integer t is called
the nilpotency index of m. The (Jacobson) radical of R, Rad(R), is defined
as the intersection of all the maximal ideals of R and it is characterized in the
following way: Let R be a ring. An element r ∈ R satisfies r ∈ Rad(R) if and
only if 1− rs is a unit in R for all s ∈ R.

Let R be a finite local ring with residue field Fq, with q = pm for some
prime number p, and consider the corresponding rings of polynomials on one
variable R[x] and Fq[x]. The map ¯ : R −→ Fq is defined by r = r+m. This
map ¯ can be extended to a reduction map R[x] −→ Fq[x] by f(x) 7→ f(x)
where f(x) = a0 +a1x+ . . .+an−1x

n−1. If f(x) ∈ R[x] we will write f instead
f(x) as it is customary nowadays. Two polynomials f, g ∈ R[x] are relatively
prime (or coprime) if 〈f〉+〈g〉 = 〈1〉. Also, f is regular if it is not a zero-divisor
in R[x] which is equivalent with f 6= 0, and f ∈ R[x] is basic irreducible if f is
irreducible in Fq[x]. If I is an ideal of a finite commutative ring with identity
R, then the set I[x] = {r0 + r1x+ . . . + rnx

n ∈ R[x] | ri ∈ I, 0 ≤ i ≤ n} is an
ideal of R[x]. From the definitions, the following lemma is easy to prove.
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Lemma 2.1. Let f, g ∈ R[x], where (R,m,Fq) is a finite commutative local
ring with identity. Then f, g are relatively prime in R[x] if and only if f and
g are relatively prime in Fq[x].

As mentioned, R will denote a finite commutative ring with identity un-
less othereise specified. From Hensel’s lemma (theorem XIII.4) and theorems
XIII.7. and XIII.11 in the reference [8] it is not difficult to see the following,

Proposition 2.2. Let f ∈ R[x] be a monic regular polynomial, where
(R,m,Fq) is a finite commutative local ring with identity. Suppose in Fq[x],
f =

∏m
i=1 gi with the gi monic, irreducible and pairwise relatively prime poly-

nomials. Then, f has a factorization as a product of monic, basic irreducible
and pairwise coprime polynomials.

General definitions and results about idempotent elements in a ring are
recalled. Let R be a commutative ring with unity. An element e ∈ R is called
idempotent if e2 = e. Two idempotent elements e and f are said to be orthog-
onal if ef = 0. An idempotent e is called primitive if e = f + g with f and
g orthogonal idempotent, then f = 0 or g = 0. A set of idempotent elements
{e1, e2, . . . , em} such that

∑m
i=1 ei = 1 is called a complete set. Furthermore, if

eiej = 0, i 6= j, the set is called a complete set of pairwise orthogonal idempo-
tent elements. Additionally, if all the idempotents in such a set are primitive,
the set is the complete set of primitive pairwise orthogonal idempotent ele-
ments and it is unique ([6] proposition 22.1). The set of idempotent elements
of a ring R will be denoted by E(R).

We recall the notion of a lifting idempotent. If I is an ideal of R, let
θ ∈ E(R/I). It is said that θ is lifted to R if there is an e ∈ E(R) such that
π(e) = θ, where π is the natural map R → R/I. In this case we say e ∈ E(R)
is a lifting idempotent.

A ring R is decomposable if there are R1,R2, . . . ,Rl commutative non-
trivial subrings of R with identity such that R ∼= ⊕l

i=1Ri.
Let (R,m,Fp) be a finite commutative local ring with identity. In par-

ticular, R is noetherian and artinian. Given a basic irreducible polynomial
f ∈ R[x], let Rf = R[x]/〈f〉. With the notation and definitions introduced
above we establish the following,

Lemma 2.3. Let f ∈ R[x] be a monic basic irreducible polynomial and let
Rf = R[x]/〈f〉. Then, for g ∈ R[x], g + 〈f〉 ∈ U(Rf ) if and only if g is
relatively prime with f in R[x].

Proof. Suppose f, g are relatively prime inR[x]. Then by definition 〈g〉+〈f〉 =
〈1〉 implies there are h0, h1 ∈ R such that h0g + h1f = 1. Thus, in Rf we
have h0g + 〈f〉 = 1 + 〈f〉, that is, g + 〈f〉 ∈ U(Rf ). Conversely, suppose
g + 〈f〉 ∈ U(Rf ). Let h + 〈f〉 ∈ Rf such that gh + 〈f〉 = 1 + 〈f〉. Then
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hg + fF0 = 1 + fF1 for some F0, F1 ∈ R[x]. Rearranging the terms we
have hg + fF = 1, with F ∈ Rf and then g and f are relatively prime by
definition.

Corollary 2.4. Let Rf be as in lemma 2.3. If f, h ∈ R[x] are not relatively
prime in R[x], then (1 + h) + 〈f〉 ∈ U(Rf ).

Proof. If h ∈ m[x] ⊂ R[x] there is nothing to prove: (1 + h) + 〈f〉 ∈ U(Rf )
since 1 + 〈f〉 is a unit and h + 〈f〉 is nilpotent. Let us suppose h /∈ m[x].
By hypothesis h and f are not relatively prime in Fp[x] which, given f is
irreducible, means that h = h0f for some h0 ∈ Fp[x]. Thus,

1 + h− h0f = 1 + h0f − h0f = 1 ∈ Fp[x].

By lemma 2.1, 1 + h and f are relatively prime in R[x]. The claim follows
from lemma 2.3.

Proposition 2.5. Let f ∈ R[x] be a monic basic irreducible polynomial.
Then Rf is a local ring.

Proof. It will be shown that the set of non-units M of Rf is an ideal. To
prove the assertion we only need to show the set is closed under addition. Let
g + 〈f〉, h + 〈f〉 be non-units. By lemma 2.3 g and h are not relatively prime
with f in R[x]. Suppose without loss of generality that (g+h)+ 〈f〉 = 1+ 〈f〉.
From this g+〈f〉 = (1−h)+〈f〉, leading to an absurd. On one hand g+〈f〉 is a
non-unit and on the other hand 〈1−h〉+〈f〉 = 〈1〉 inR[x], because 1− h and f
are relatively prime in Fp[x]. However that means (1−h)+〈f〉 ∈ U(Rf ). Then
the non-units of Rf form the ideal M and, therefore, Rf is a local ring.

Lemma 2.3 and proposition 2.5 imply the following claim. The proof is in
essence the same as Proposition 11 of [12] and it is omitted.

Proposition 2.6. Let f ∈ Rk[x] be a monic basic irreducible polynomial
and Rf = R[x]/〈f〉. Then any ideal I of Rf has the form

I = IRf ,

where IRf denotes the ideal extension of the ideal I of R to the ring Rf .

Let R = R[x]/〈F 〉, where F ∈ R[x].

Theorem 2.7. Let (R,m,Fp) be a finite local commutative ring with iden-
tity. Let F ∈ R[x] be such that degF = n, gcd(p, n) = 1, and F =

∏m
i=1 fi

where the fi are monic basic pairwise relatively prime polynomials in R[x].
Then,

R = R[x]/〈F 〉 ∼=
m⊕
i=1

Rfi
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where Rfi = R[x]/〈fi〉 for i = 1, . . . ,m. Furthermore, there is a complete set
of primitive pairwise orthogonal idempotents

Ep = {ê1, . . . , êm}

in R[x]/〈F 〉 such that Rfi
∼= êiR for i = 1, . . . ,m, i.e, R ∼=

⊕m
i=1Rfi

∼=⊕m
i=1 êiR.

Proof. As a direct consequence of the Chinese Remainder theorem we have

R = R[x]/〈F 〉 ∼=
m⊕
i=1

Rfi .

Let ei = (0, . . . , 1, . . . , 0) be the element of
⊕m

i=1Rfi with 1 at the ith co-
ordinate and all the remains equal to zero. It is immediate to see that ei

is idempotent, i = 1, . . . ,m and the set {e1, . . . , el} is a complete set of
pairwise orthogonal idempotents. We claim each ei is primitive. Suppose
hi = (hi1, . . . , him),gi = (gi1, . . . , gim) ∈ E(

⊕m
i=1Rfi) are orthogonal idempo-

tents such that
ei = hi + gi,

then (hi1gi1 . . . , himgim) = (0, . . . , 0) from which hijgij = 0, j = 1, . . . ,m.
Note hij, gij ∈ Rfi are idempotents in a local ring, then hi = 0 or gi = 0,

where 0 is the zero of
⊕l

i=1Rfi . The existence of a complete set of primitive
pairwise orthogonal idempotents {ê1, ê2, . . . , êl} ⊂ R follows from the fact that
êi = ψ−1(ei) where ψ : R −→

⊕l
i=1Rfi is the Chinese Remainder Theorem

isomorphism. Notice (êiR,+, ·) is a finite commutative ring with identity êi.
The isomorphism ψ−1 restricted to each summand of

⊕m
i=1Rfi induces a ring

isomorphism φi in the obvious way between Rfi and the ring êiR = 〈êi〉.

3 Constacyclic Codes over a local ring with

residual field Fp
In this section, given a prime p, we consider linear constacyclic codes of length
n, gcd(p, n) = 1, defined over a local ring (R,m,Fp). An R-submodule C ⊂
Rn will be a linear code C over R. A codeword will be denoted as c =
(c0, c1, . . . , cn−1), ci ∈ R. Let γ ∈ U(R) be unit of R. A linear code C of
length n over R is constacyclic if it satisfied

(c0, c1, . . . , cn−1) implies (γcn−1, c0, c1, . . . , cn−2) ∈ C.

By means of the polynomial representation associated to the elements of Rn

and, in particular, with the elements of the code C ([5], [4]) a linear constacyclic
code of length n, with gcd(p, n) = 1, is identified with an ideal from the ring

Rn = R[x]/〈xn − γ〉, γ ∈ U(R).
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Particular cases of linear constacyclic codes are called cyclic and negacyclic
codes with γ = 1,−1 respectively.

From theorem 2.7, we have the following situation illustrated in the dia-
gram,

R[x]/〈xn − γ〉

¯

��

∼= //
⊕m

i=1R[x]/〈fi〉

¯
��

Fp[x]/〈xn − γ〉 ∼=
//
⊕m

i=1 Fp[x]/〈f i〉.

Via the isomorphisms given by the Chinese Remainder theorem and the cor-
responding reduction maps, an explicit isomorphism φ :

⊕m
i=1 êiRn −→ Rn is

obtained. The map φ :
⊕m

i=1 êRn −→ Rn defined by

φ(ê1c1 + 〈xn − γ〉, . . . , êmcm + 〈xn − γ〉) =
m∑
i=1

êici + 〈xn − γ〉, (1)

where the êi ∈ Ep, the corresponding complete set of primitive pairwise
orthogonal idempotents from Rn.

That the map φ is an isomorphism, follows from the next theorem.

Theorem 3.1. Let n be an integer such that gcd(p, n) = 1, xn−γ =
∏m

i=1 fi
where the fi’s are distinct monic basic irreducible pairwise relatively prime
polynomials in R[x] for i ∈ {1, 2, . . . ,m}, and (R,m,Fp) a local ring. The
complete set of primitive pairwise orthogonal idempotents in Rn

Ep = {ê1, ê2, . . . , êm}

is given explicitly by êi = λ̂if̂i + 〈xn − γ〉, for i = 1, . . . ,m, where λ̂i ∈ R[x]
satisfy

m∑
i=1

λ̂if̂i = 1 ∈ R[x].

Moreover, each one of the primitive êi is a lifting idempotent from the ring
Fp[x]/〈xn − γ〉.

Proof. Let xn − γ =
∏m

i=1 Fi be the product of irreducible polynomials in Fp[x],

with Fi = f i and let F̂i =
∏

j 6=i Fj. Then gcd(F̂1, F̂2, . . . , F̂m) = 1 and from

Lemma 2.1, the corresponding f̂1, . . . , f̂m where f̂i =
∏

j 6=i fj, are relatively

prime. Then there exist λ̂i ∈ R[x], i = 1, . . . ,m such that

λ̂1f̂1 + λ̂2f̂2 + . . .+ λ̂mf̂m = 1.

Also, for i = 1, . . . ,m, from lemma 2.1 and theorem 2.7, there is a λi ∈ R[x]
such that λ̂if̂i+λifi = 1 inR[x] which implies êi = λ̂if̂i+〈xn−γ〉 is idempotent
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in Rn. This defined êiêj = 0 + 〈xn− γ〉 for i 6= j and by construction they are
primitive. The idempotent êi ∈ Rn by definition is a lifting idempotent as a
consequence of the reduction map R/〈xn − γ〉 → (R/〈xn − γ〉)/m.

The previous theorem together with the next one will provide a way to
determine the set of primitive idempotent elements in the ring Rn from the
ring Fp[x]/〈xn − γ〉.

Proposition 3.2. ([9], Proposition 4.1) Let R be a commutative ring and
N a nilpotent ideal of R with nilpotency index t ≥ 2. Let s > 1 be the
characteristic of the quotient ring R/N . If e is an idempotent element of
R/N then,

es
t−1

is an idempotent element of the ring R, called the lift of e. Moreover, if there is
a collection of primitive orthogonal idempotent elements of R/N it lifts to a set
of idempotent elements of R with the same property. Also, |E(R)| = |E(R/N)|
where E(R) is the set of idempotent elements of R.

Now we apply the previous results to our situation. Recall that (R,m,Fp)
is a local ring, then Rn = R[x]/〈xn−γ〉, mn = mRn is an ideal with nilpotency
index t, where m is the maximal ideal of R and Rn/mn = Fp[x]/〈xn − γ〉 has
characteristic s = p. With the previous notation the following claim follows
easily.

Theorem 3.3. Let E = {θ̂1, θ̂2, . . . θ̂m} be the complete set of primitive
pairwise idempotent elements in the ring Fp[x]/〈xn − γ〉. Then

Ep = {ê1 = θ̂p
t−1

1 , ê2 = θ̂p
t−1

2 , . . . , êm = θ̂p
t−1

m }

is the complete set of primitive pairwise orthogonal idempotent elements of the
ring Rn.

With notation as above, the following result is easy to prove.

Theorem 3.4. Let n be an integer such that gcd(p, n) = 1, and xn − γ =∏m
i fi be a product of monic basic irreducible pairwise coprime polynomials.

1. The ring Rn is a principal ideal ring if and only if R is a principal ideal
ring.

2. The ring Rn is a semi-local ring. Moreover, Rn has exactly m maximal
ideals.

3. Let L be the set of ideals of the ring R (including 〈1〉) and m the number
of distinct monic basic irreducible coprime factors of xn − γ in R[x].
Then the ring Rn has |L|m ideals.
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Proof. With the notation as above, for j = 1, . . . ,m consider the ideal

Mj = 〈1 + 〈f1〉〉 ⊕ . . .⊕MRfj ⊕ . . .⊕ 〈1 + 〈fm〉〉 ⊂
m⊕
i=1

Rfi .

This is a maximal ideal as, from propositions 2.5 and 2.6,(
m⊕
i=1

Rfi

)
/Mj

∼= Fpdeg fj .

Therefore, from theorem 2.7 the ideal Mj has the same number of generators
under the isomorphism image φ(Mj). The second claim is a consequence of
this fact. The third part follows from the Chine Remainder theorem.

We recall that the ringR is local with maximal ideal m and residue field Fp.
If f ∈ R[x] its image under the reduction map modulo m to Fp[x] is denoted
by f . We have the following.

Proposition 3.5. Let γ be a unit of the ring R, xn − γ =
∏m

i=1 fi where n
is such that gcd(p, n) = 1 and fi’s are distinct monic basic irreducible pairwise
relatively prime polynomials in R[x] for i ∈ {1, 2, . . . ,m}. Let xn − γ = Πm

i=1f i

be the corresponding product of irreducible factors in Fp[x]. Then a non-zero
principal ideal C = 〈f+〈xn−γ〉〉 ⊆ Rn is trivial if and only if gcd(f, xn − γ) =
1 in Fp[x].

Proof. If gcd(f, xn − γ) = 1, then gcd(f, fi) = 1 and from the lemma 2.1 we
have 〈f〉+ 〈fi〉 = 〈1〉 in R[x]. Then, lemma 2.3 and theorem 2.7 imply

〈f + 〈xn − γ〉〉 ∼= ⊕m
i=1〈1 + 〈fi〉〉 =

m⊕
i=1

Rfi .

Now we are able to give the following,

Theorem 3.6. Let n be an integer such that gcd(p, n) = 1, Rn = R[x]/〈xn−
γ〉 and let xn − γ =

∏m
i=1 fi be the representation of xn − γ as a product of

distinct monic basic irreducible pairwise relatively prime polynomials in R[x].
Let C = 〈f + 〈xn − γ〉〉 be a non-trivial principal ideal of Rn and assume
f = fj1fj2 · · · fjs where jl ∈ M = {1, 2, ...,m}, l = 1, 2, ..., s. Then, the idem-
potent element ef + 〈xn − γ〉 ∈ E(Rn) such that

C = 〈ef + 〈xn − γ〉〉

is given by

ef + 〈xn − γ〉 =
∑
i

êi + 〈xn − γ〉,

where {êi + 〈xn − γ〉 | i ∈ M \ {j1, j2, ..., js}} ⊂ Ep and the set Ep is the
complete set of primitive pairwise orthogonal idempotent elements of Rn.
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Proof. Since f =
∏s

l=1 fjl , let f̂ =
∏

i fi with i ∈ M \ {j1, j2, ..., js}. Thus f

and f̂ are relatively prime and there are λ, λ̂ ∈ R[x] such that λf + λ̂f̂ = 1.
Let ef + 〈xn − γ〉 = λf + 〈xn − γ〉 ∈ Rn. It is easy to see that this is an
idempotent element. Observe that

λf ≡ 1 ≡ λ̂if̂i mod 〈fi〉, i ∈M \ {j1, j2, . . . , js},

and
λf ≡ 0 mod 〈fjl〉, l = 1, 2, . . . , s.

Using the isomorphism (1) from
⊕m

i=1Rfi → Rn the expression for ef+〈xn−γ〉
is obtained. Also, by construction,

fef + 〈xn − γ〉 = f(λf) + 〈xn − γ〉 = f(1− λ̂f̂) + 〈xn − γ〉 = f + 〈xn − γ〉.

It follows that 〈f + 〈xn − γ〉〉 = 〈ef + 〈xn − γ〉〉.

4 Examples of constacyclic codes over local

rings and their idempotents

SageMath ([13]) was utilized to develop the computations in the following
examples.

Example 4.1. Let R = F2+uF2 = {a+bu | a, b ∈ F2, u
2 = 0} = {0, 1, u, 1+

u}. This is a finite commutative local chain ring with identity, whose maximal
ideal is m = 〈u〉 with nilpotency index t = 2, and residue field R/m = F2. Let
n = 15, γ = 1 and p = 2, i.e, we describe the cyclic codes of length n = 15. In
R[x] the polynomial x15 − 1 =

∏5
i=1 fi where f1 = x+ 1, f2 = x2 + x+ 1, f3 =

x4 + x+ 1, f4 = x4 + x3 + 1, f5 = x4 + x3 + x2 + x+ 1. From theorem 2.7 we
have

R15 = R[x]/〈x15 − 1〉 ∼=
5⊕

i=1

Rfi
∼=

5⊕
i=1

êiR15,

where êi ∈ E2, the complete set of primitive pairwise orthogonal idempotents
of R15, set which we will proceed to determine. Let R15 = F2[x]/〈x15 + 1〉. We

have x15 − 1 = x15+1 and x15+1 =
∏5

i=1 fi ∈ F2[x]. By means of the Euclidean
algorithm, the complete set of primitive pairwise orthogonal idempotents in R15

is given by {θ̂i, i = 1, 2, 3, 4, 5}, where

θ̂1 =
5∏

j 6=1

fj + 〈x15 + 1〉,

θ̂2 = x14 + x13 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x+ 〈x15 + 1〉,
θ̂3 = x12 + x9 + x8 + x6 + x4 + x3 + x2 + x+ 〈x15 + 1〉,
θ̂4 = x14 + x13 + x12 + x11 + x9 + x7 + x6 + x3 + 〈x15 + 1〉,
θ̂5 = x14 + x13 + x12 + x11 + x9 + x8 + x7 + x6 + x4 + x3 + x2 + x+ 〈x15 + 1〉.
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with θ̂1 = x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 +
x + 1 + 〈x15 + 1〉. Then, by theorem 3.3, E2 = {θ̂2

i , i = 1, 2, 3, 4, 5} ⊂ R15.
From proposition 2.6 each Rfi = R[x]/〈fi〉, i = 1, . . . , 5 has the same set of
ideals L = {〈0〉, 〈1〉, 〈u〉, 〈1 + u〉} as R. By means of the isomorphism (1) the
generator for a non trivial cyclic code C in R15 is given by

C = 〈
5∑

i=1

giêi + 〈x15 − 1〉〉

where gi ∈ {0, 1, u, 1 + u}, this last set the collection of ideal generators in the
ring R. Notice, by theorem 3.4, each cyclic code C in R15 is principal since
R = F2 + uF2 is a principal ideal ring.

Example 4.2. From the ring in example 4.1, i.e. R = F2 + uF2 where
u2 = 0, take γ = 1 + u. We will determine the complete set of primitive
pairwise orthogonal idempotent elements for the ring

R15 = R[x]/〈x15 − (1 + u)〉.

In this case we have the factorization x15 − (1 + u) =
∏5

i=1 hi as a product
of monic basic irreducible pairwise coprime polynomials in R[x], where h1 =
x+(1+u), h2 = x2 +(1+u)x+1, h3 = x4 +(1+u)x+1, h4 = x4 +(1+u)x3 +1
and h5 = x4 + (1 + u)x3 + x2 + (1 + u)x+ 1. In the ring R15 = F2[x]/〈x15 + 1〉
we have the complete set of primitive pairwise orthogonal idempotent elements
{θ̂1, θ̂2, θ̂3, θ̂4, θ̂5} (see previous example 4.1) from where by means of theorem
3.3 the corresponding complete set of primitive pairwise orthogonal idempotent
elements in R15 is given by
ê1 = x14 + (1 + u)x13 + x12 + (1 + u)x11 + x10 + (1 + u)x9 + x8 + (1 + u)x7 + x6 + (1 + u)x5 + x4 + (1 +

u)x3 + x2 + (1 + u)x + 1.

ê2 = x14 + (1 + u)x13 + (1 + u)x11 + x10 + x8 + (1 + u)x7 + (1 + u)x5 + x4 + x2 + (1 + u)x.

ê3 = x12 + (1 + u)x9 + x8 + x6 + x4 + (1 + u)x3 + x2 + (1 + u)x.

ê4 = x14 + (1 + u)x13 + x12 + (1 + u)x11 + (1 + u)x9 + (1 + u)x7 + x6 + (1 + u)x3.

ê5 = x14 + (1 + u)x13 + x12 + (1 + u)x11 + (1 + u)x9 + x8 + (1 + u)x7 + x6 + x4 + (1 + u)x3 + x2 + (1 + u)x.

Notice we have omitted the part ’+〈x15− (1 +u)〉’ on each idempotent for sake
of space and notation clarity. It is worth mentioning the idempotent elements
obtained in this work and those obtained from proposition 3.1 appearing in [11]
where the authors prove R[x]/〈xn − 1〉 ∼= R[x]/〈x15 − (1 + u)〉 in case n is an
odd integer. The isomorphism µ : R[x]/〈xn−1〉 −→ R[x]/〈x15− (1+u)〉 given
in such work and defined by µ(c(x)) = c((1+u)x) maps each êi ∈ R[x]/〈xn−1〉
to êi ∈ R[x]/〈x15 − (1 + u)〉.

Example 4.3. Let p = 5, γ = 8 and n = 6 and consider the non-chain ring
R = Z25 + uZ25 = {a + bu | a, b ∈ Z25, u

2 = 0}. R is a finite commutative
local ring with identity and maximal ideal m = 〈5, u〉 whose nilpotency index
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is t = 3. The ring operations are the natural ones derived from the sum and
product in Z25. With these parameters, the ring R6 = R[x]/〈x6− 8〉. In R[x],
x6 − 8 = f1f2f3 where f1 = x2 + 23, f2 = x2 + 12x + 23, f3 = x2 + 13x + 23.
The residue field is R/m = F5. Under the reduction map, in F5[x],

x6 − 8 = x6 + 2 = f 1f 2f 3

where f 1 = x2 + 3, f 2 = x2 + 2x + 3, f 3 = x2 + 3x + 3. Then let R6 =
F5[x]/〈x6 + 2〉. The complete set of primitive pairwise orthogonal idempotent
elements in R6 is {θ̂1 = 3x4 + x2 + 2 + 〈x6 + 2〉, θ̂2 = x5 + x4 + 2x2 + x+ 2 +
〈x6 + 2〉, θ̂3 = 4x5 + x4 + 2x2 + 4x+ 2 + 〈x6 + 2〉}. From theorem 3.3 we have

E5 = {ê1, ê2, ê3} = {θ̂25
1 , θ̂

25
2 , θ̂

25
3 }

where êi = θ̂25
i , i = 1, 2, 3, and

θ̂25
1 = 23x4 + 21x2 + 17 + 〈x6 − 8〉,
θ̂25

2 = 6x5 + x4 + 2x2 + x+ 17 + 〈x6 − 8〉,
θ̂25

3 = 19x5 + x4 + 2x2 + 24x+ 17 + 〈x6 − 8〉.

With the previous information, using theorem 3.6, the idempotents associated
to the ideal of R6

C = 〈x4 +2x2 +4+〈x6−8〉, u(x2 +23)+〈x6−8〉〉 = 〈f+〈x6−8〉, ug+〈x6−8〉〉

are determined. Observe that f = f2f3, g = f1 in R[x]. Then ef = ê1 = 23x4+
21x2 +17+〈x6−8〉, and similarly, eg = ê2 + ê3 = 2x4 +4x2 +9+〈x6−8〉. Thus,
since ef , eg ∈ C, ef (f+〈x6−8〉) = f+〈x6−8〉, eg(ug+〈x6−8〉) = ug+〈x6−8〉,
then

C = 〈f + 〈x6 − 8〉, ug + 〈x6 − 8〉〉 = 〈ef , ueg〉.
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[10] G. H. Norton and A. Sǎlǎgean, On the structure of linear and cyclic codes
over a finite chain ring, Applicable Algebra in Engineering, Communica-
tion and Computing, 10 (2000), 489–506.
https://doi.org/10.1007/PL00012382

[11] J.F. Qian, L.N. Zhang, and S.X. Zhu, (1 + u)-constacyclic and cyclic
codes over F2 + uF2, Applied Mathematics Letters, 19(8) (2006), 820–
823. https://doi.org/10.1016/j.aml.2005.10.011

[12] H. Tapia-Recillas and J. A. Velazco-Velazco, Cyclic Codes over the ring
Z2k + uZ2k , São Paulo Journal of Mathematical Sciences, 18 (2024), 14–
27. https://doi.org/10.1007/s40863-024-00412-z

[13] The Sage Developers, SageMath, the Sage Mathematics Software System
(Version 10.0), 2023. https://www.sagemath.org.

Received: May 17, 2025; Published: May 31, 2025





	 São Paulo Journal of Mathematical Sciences

1 3

invertible quadratic residues in R are described in terms of properties of invertible 
quadratic residues in the quotient ring R∕N1 , i.e., the properties are “lifted” from 
those of a quotient ring. Recently, this class of rings has been studied in ([10–12]) to 
obtain properties of idempotent elements, invertible elements and a generalization of 
the Euler-Fermat Theorem using lifting method. In essence, the proof of the results 
discussed in those works are based on the existence of a multiplicative function H 
from R∕N1 to R that preservers the essencial characteristics of the elements in the 
quotient ring R∕N1 , for more details see Proposition 5. In this manuscript, the ideas 
in the works cited above are adapted to the study of invertible quadratic residues.

Examples of rings that satisfy the CNC-conditions include the integer modules 
pk , ℤpk , where p is a prime number and k is a positive integer, finite chain rings, the 
ring group RG with Galois ring R and commutative group G and the polynomial 
ring R[x] where R is a commutative ring containing a collection of ideals satisfying 
the CNC-condition.

The manuscript is divided in four sections. In Sect. 2 notation and facts needed in 
the rest of the manuscript are presented. In section 3 the main results are given and 
in Sect. 4 applications of the results previously discussed are considered. Examples 
are given to illustrate the main results.

2 � Notations and basic facts

Given R an associative ring with identity and N a nil ideal of R, we begin our discus-
sion recalling that units of the quotient ring R/N can be lifted to the ring R. More 
precisely, if R∗ and (R∕N)∗ denote the group of units of the ring R and R/N respec-
tively, the following result holds.

Proposition 1  Let R be an associative ring with identity, N a nil ideal of R and    
̄∶ R ⟶ R∕N the canonical homomorphism from R to the quotient ring R/N. Then, 

1.	 f̄ = f + N ∈ (R∕N)∗ if and only if f + N ⊂ R∗.
2.	 If R is finite the cardinality of R∗ and the cardinality of (R∕N)∗ are related by the 

relation 

Proof  The proof of this proposition can be found in [11],  Proposition 2.1 and 
Remark 2.2. 	�  ◻

Recall that an element a of a ring R is a quadratic residue, if there exists x ∈ R 
such that x2 = a ([1, 13, 14]). Given N an ideal of R, it is clear that if a is a quad-
ratic residue in the ring R, then a + N is a quadratic residue in the quotient ring R/N. 
The following proposition provides sufficient conditions to prove the converse of 

(1)∣ R∗ ∣=∣ N ∣∣ (R∕N)∗ ∣ .
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this statement, as it will be seen, proposition 1 will be essential in the proof that will 
be presented.

Proposition 2  Let R be a commutative ring with identity and N a nil ideal of R. If 
(g + N)2 = a + N and 2g + N is an invertible element in R/N, then the function

is bijective. In other words, if a + N is a quadratic residue in R/N, then every ele-
ment b ∈ a + N is a quadratic residue in the ring R and, and for all b ∈ a + N the 
quadratic equation

has a unique solution in the set g + N ⊂ R.

Proof  Since (g + N)2 = a + N , it is clear that the function � is well defined. Since N 
is a nil ideal of R and 2g + N is an invertible element in R/N it follows from Proposi-
tion 1 that for all p ∈ N , the element 2g + p is an invertible element in R. Thus, if 
�(g + m1) = �(g + m2) then,

Since 2g + m1 + m2 is an invertible element in the ring R, it is concluded that 
m1 = m2 . Therefore � is an injective function. Now, we show that � is surjective. First 
of all, note that since (g + N)2 = a + N , there exists n0 ∈ N , such that g2 = a + n0 . 
Now, given n ∈ N , it is easy to see that

which proves the claim.	�  ◻

Now, definitions and notation that will be useful in the rest of the manuscript are 
introduced. The set q(R∗) will denote the quadratic residues in the ring R that are 
also units in R, that is

For a a quadratic residue in the ring R, s(a) will denote the set of solutions of the 
equation x2 = a in the ring R. In other words,

Finally, if N is an ideal in ring R and a ∈ R , T(a + N) will be denote the set of solu-
tions of the equation x2 = b , when b varies in the equivalence class a + N ∈ R∕N , in 
other words

� ∶ g + N → a + N given by �(g + m) = (g + m)2,

y2 = b

(2g + m1 + m2)(m1 − m2) = 0.

�(g + (2g)−1(n − n0)) = a + n,

q(R∗) = {a ∈ R;a is a quadratic residue in R and a ∈ R∗}.

s(a) = {x ∈ R;x2 = a}.

T(a + N) = {y ∈ R;y2 ∈ a + N}.
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Based on propositions 1 and 2, sufficient conditions to lift quadratic residues 
from the quotient ring R/N in ring R, where N is a nil ideal of the ring R are 
established. In addition if R is finite, formulas relating the cardinality of the sets 
N, s(b), s(b + N),R∗, (R∕N)∗, q(R∗) and q((R∕N)∗) are given.

Proposition 3  Let R be a commutative ring with identity and N a nil ideal of R such 
that 2 + N is an invertible element in R/N. The following statements hold, 

1.	 a + N ∈ q((R∕N)∗) if and only if a + N ⊂ q(R∗).
2.	 The cardinality of the set q(R∗) satisfies 

3.	 If a + N ∈ q((R∕N)∗) , then for all b ∈ a + N the number of solutions of the quad-
ratic equation 

 in the ring R is equal to the number of solutions of the quadratic equation 

 in the ring R/N. In other words 

 for all b ∈ a + N.
4.	 The cardinality of the set R∗ satisfies the following relation 

5.	 If in addition, there exists � such that ∣ s(a + N) ∣= � for all a + N ∈ q((R∕N)∗) , 

Proof  1. It is easy to see that if a + N ⊂ q(R∗) , then a + N ∈ q((R∕N)∗) . Now 
we proved the other implication. Assuming a + N ∈ q((R∕N)∗) , there exists 
g + N ∈ R∕N such that (g + N)2 = a + N . Since a + N and 2 + N are invertible ele-
ments in the ring R/N, it follows that

(2)∣ q(R∗) ∣=∣ N ∣∣ q((R∕N)∗) ∣ .

y2 = b

y2 = b + N

∣ s(b) ∣=∣ s(a + N) ∣

(3)∣ R∗ ∣=∣ N ∣
∑

a+N∈q((R∕N)∗)

∣ s(a + N) ∣ .

(4)

a) ∣ q((R∕N)∗) ∣=
∣ (R∕N)∗ ∣

�

b) ∣ q(R∗) ∣=
∣ N ∣∣ (R∕N)∗ ∣

�

c) ∣ q(R∗) ∣=
∣ R∗ ∣

�
.

(2 + N)(g + N) = 2g + N
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is an invertible element in R/N, thus proposition 2 implies that every element 
b ∈ a + N is a quadratic residue in the ring R. In addition, since a + N ∈ (R∕N)∗ and 
N is a nil ideal of the ring R, proposition 1 implies that for all b ∈ a + N , b ∈ R∗ . 
This proofs that a + N ⊂ q(R∗).

2. From claim 1, it follows that

Then,

which proves relation (2).
3. Note that since a + N ∈ q((R∕N)∗) , for all b ∈ a + N , s(b) ≠ � . In order to 

prove that ∣ s(b) ∣=∣ s(a + N) ∣ , it will be shown that the canonical homomorphism 
� ∶ R → R∕N restricted to the set s(b), namely

determines a bijection between s(b) and s(b + N) . In fact, if x ∈ s(b) then 
x + N ∈ s(b + N) , thus the function � is well defined. Now, if �(x) = �(y) = x + N 
with x, y ∈ s(b) , then (x + N)2 = b + N = a + N with 2x + N an invertible element 
in the ring R/N. So, proposition 2 implies that the function

is bijective, hence, since x, y ∈ x + N and x2 = y2 = b , the injectivity of the func-
tion �1 implies that x = y . Now, if t + N ∈ s(b + N) , then (t + N)2 = b + N = a + N . 
Since 2t + N is an invertible element in the ring R/N, proposition 2 implies that the 
function

is bijective. Thus there exists n0 ∈ N , such that �2(t + n0) = (t + n0)
2 = b . Hence, 

t + n0 ∈ s(b) and �(t + n0) = t + N , hence � is a surjective function.
4. Note that the set R∗ is a disjoint union of the sets T(a + N) with 

a + N ∈ q((R∕N)∗) , that is

From this fact, it follows that

In order to compute ∣ T(a + N) ∣ , observe that T(a + N) can be written as a disjoint 
union of the sets s(b) with b ∈ a + N,

(5)q(R∗) =
⋃

a+N∈q((R∕N)∗)

(a + N).

∣ q(R∗) ∣=
∑

a+N∈q((R∕N)∗)

∣ a + N ∣=∣ N ∣
∑

a+N∈q((R∕N)∗)

1 =∣ N ∣∣ q((R∕N)∗) ∣,

x ∈ s(b) → �(x) = x + N

z ∈ x + N → �1(z) = z2 ∈ b + N

z ∈ t + N → �2(z) = z2 ∈ b + N

R∗ =
⋃

a+N∈q((R∕N)∗)

T(a + N).

(6)∣ R∗ ∣=
∑

a+N∈q((R∕N)∗)

∣ T(a + N) ∣ .
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Thus, since for all b ∈ a + N , ∣ s(b) ∣=∣ s(a + N) ∣,

Finally, combining (6) and (8), relation in (3) follows easily.
5. Since |s(a + N)| = � for all a + N ∈ q((R∕N)∗) , from relation (3), it follows 

that

and proposition (1) implies that,

Thus, by combining (9) and (10), relation in (5)-a) is obtained. The relation in (5)-b) 
is obtained from (2) and (5)-a). Finally, relation in (5)-c) is obtained from (10) and 
(5)-b). 	�  ◻

In the next lines the results in proposition 3 are illustrated with an example. 
Let p be a prime number different from 2, k a natural number and let R = ℤpk be 
the ring of integers modulo pk . It is clear that the ideal N = ⟨p⟩ , is a nilpotent 
ideal of index k of the ring R. In addition,

thus ∣ (R∕N)∗ ∣= p − 1 and from Lagrange’s theorem it follows that ∣ N ∣= pk−1 . From 
the identity in (1), we have that ∣ R∗ ∣= pk−1(p − 1) . In addition, since, R∕N ≅ ℤp is 
a field of characteristic different from 2, it follows that the number � appearing in 
claim 5 of proposition 3 is � = 2 . From proposition 4, we conclude that:

•	 If a ∈ ℤ
∗
pk

 , and a ≡ b mod (p) , then a is a quadratic residue in ℤpk if and only 
if b is a quadratic residue in the ring ℤp.

•	 If a ∈ q(ℤ∗
pk
) and a ≡ b mod (p) , then the number of solutions of the equation 

x2 = a in the ring ℤpk is equal to the number of solutions of the equation x2 = b 
in the field ℤp , which is equal to 2, in other words 

•	 The cardinality of the sets q(ℤ∗
p
) , q(ℤ∗

pk
) are given by 

 respectively.

(7)T(a + N) =
⋃

b∈a+N

s(b).

(8)∣ T(a + N) ∣=
∑

b∈a+N

∣ s(b) ∣=∣ s(a + N) ∣
∑

b∈a+N

1 =∣ s(a + N) ∣∣ N ∣ .

(9)∣ R∗ ∣= � ∣ N ∣∣ q((R∕N)∗) ∣,

(10)∣ R∗ ∣=∣ N ∣∣ (R∕N)∗ ∣ .

R

N
=

ℤpk

⟨p⟩ ≅ ℤp,

s(a) = s(b) = 2.

∣ q(ℤ∗
p
) ∣=

p − 1

2
and ∣ q(ℤ∗

pk
) ∣=

pk−1(p − 1)

2
,
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Next, the previous proposition is extended to a direct product of a finite collection of 
rings.

Proposition 4  Let R1,R2,… ,Rm, be commutative rings with identity and let Ni be a 
nil ideal of the ring Ri , such that 2 + Ni ∈ (Ri∕Ni)

∗ for each i = 1, 2,… ,m . The fol-
lowing statements hold: 

1.	 (a1,… , am) ∈ q((R1 ×⋯ × Rm)
∗) if and only if ai + Ni ∈ q((R∕Ni)

∗) for every 
i=1,2,...,m.

2.	 If (a1,… , am) ∈ q((R1 ×⋯ × Rm)
∗) then 

3.	 The cardinality of q((R1 ×⋯ × Rm)
∗) satisfies the following relation 

4.	 If ∣ s(a + Ni) ∣= �i for all a + Ni ∈ q((R∕Ni)
∗) , then 

 and 

Proof  The proof of this proposition is a simple consequence of the results above, so 
details are left to the reader. 	�  ◻

In the following lines the results of the previous proposition are illustrated with 
an example. Given n an odd natural number, if n = p

k1
1
p
k2
2
⋯ p

km
m  denotes the prime 

factorization of n. The Chinese Remainder Theorem implies that

By setting Ri = ℤ
p
ki
i

 and Ni = ⟨pi⟩ for i = 1, 2,… ,m , it is clear that Ri∕Ni ≅ ℤpi
 and 

that 2 + Ni ∈ (Ri∕Ni)
∗ . Thus, from proposition 4, it is concluded that:

•	 If a ∈ ℤ
∗
n
 , and a ≡ ai mod (pi) for i = 1, 2,… ,m , a is a quadratic residue in ℤn 

if and only if ai is a quadratic residue in the ring ℤpi
 for all i = 1, 2,… ,m.

•	 If a ∈ q(ℤ∗
n
) and a ≡ bi mod (p

ki
i
) for i = 1, 2,… ,m , since s(bi + Ni) = 2 for all 

i = 1, 2,… ,m , the number of solutions of the equation x2 = a in the ring ℤn is 
equal to 2m , in other words 

(11)∣ s((a1,… , am)) ∣=∣ s(a1 + N1) ∣ ⋯ ∣ s(am + Nm) ∣ .

(12)∣ q((R1 ×⋯ × Rm)
∗) ∣=∣ N1 ∣∣ q((R∕N1)

∗) ∣ ⋯ ∣ Nm ∣∣ q((R∕Nm)
∗) ∣

(13)∣ q((R1 ×⋯ × Rm)
∗) ∣=

∣ N1 ∣∣ (R∕N1)
∗ ∣ ⋯ ∣ Nm ∣∣ (R∕Nm)

∗ ∣

�1�2 ⋯ �m
,

(14)∣ q((R1 ×⋯ × Rm)
∗) ∣=

∣ (R1 ×⋯ × Rm)
∗ ∣

�1�2 ⋯ �m
.

ℤn ≅ ℤ
p
k1
1

×⋯ × ℤ
p
km
m
.
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•	 The cardinality of the set q(ℤ∗
n
) is given by 

3 � Main results

In this section we present our main results. For R a commutative ring containing 
a collection of ideals {N1,N2,… ,Nk−1} satisfying a certain condition (the CNC 
condition, Definition 1), properties of the set of invertible quadratic residues of 
the ring R are described in terms of properties of the set of invertible quadratic 
residues of the quotient ring R∕N1.

Proposition 5  Let R be a commutative ring and N a nilpotent ideal of index t ≥ 2 in 
R. Then the following statements hold: 

1.	 For any prime number p such that p ≥ t , for all n ∈ N and a ∈ R , 

 for some r ∈ R.
2.	 In addition, assuming there exists a natural number s > 1 such that sN = {0} and 

such that all the prime factors of s are greater than or equal to the nilpotency 
index t of the ideal N. The function H ∶ R∕N → R given by

 is well defined and it is multiplicative, i.e., it satisfies H((x + N)(y + N))
= H(x + N)H(y + N), for all x, y ∈ R.

3.	 Under the assumptions of claim 1, if a + N is a quadratic residue in the quotient 
ring R/N, then H(a + N) = as is a quadratic residue in R. More precisely, if g ∈ R 
is such that (g + N)2 = a + N , then 

Proof 

1.	 Since nt = 0 , 

s(a) = 2m.

∣ q(ℤ∗
n
) ∣=

p
k1−1

1
(p1 − 1)⋯ p

km−1
m (pm − 1)

2m
.

(a + n)p = ap + pnr,

H(x + N) = xs

(gs)2 = as.
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 Since p is a prime number, p divides 
(
p

j

)
 for all 1 ≤ j ≤ p − 1 . Also, since 

t ≤ p , 

 where ki =
(
p

i

)
∕p . Therefore, 

 with r = k1a
p−1 + k2a

p−2n +⋯ + kt−1a
p−t+1nt−2 ∈ R.

2.	 Let p1, p2, p3,… , pm be the prime numbers, not necessarily different, appearing in 
the prime factor decomposition of the integer s, with pi ≥ t , for i = 1, 2, 3,⋯ ,m. 
Since y + N = x + N , there exists n ∈ N such that y = x + n . Since p1 ≥ t , from 
claim 1, 

 for some r1 ∈ R . Similarly, since p2 ≥ t and p1nr1 ∈ N , it follows from claim 1 
and the previous relation that 

 for some r2 ∈ R . In the same way, it is possible to verify that 

 with r1, r2,… , rm ∈ R . In other words, 

 where h = nr1r2 ⋯ rm ∈ N . Finally, since h ∈ N and sN = 0 , it follows that 
ys = xs. Hence, the function H is well defined and it is easily verified that it is 
multiplicative.

3.	 Since (g + N)2 = a + N , it follows that (H(g + N))2 = H(a + N) , thus (gs)2 = as , 
i.e., as is a quadratic residue in the ring R.

	�  ◻

An example illustrating the previous proposition is presented which it 
allows to discuss additional properties of the function H. Consider R = ℤ25 and 
N = ⟨5⟩ = {0, 5, 10, 15, 20} . It is clear that N has nilpotency index t = 2 , sN = 0 for 
s = 5 and

(a + n)p =

p∑

j=0

(
p

j

)
ap−jnj = ap +

t−1∑

j=1

(
p

j

)
ap−jnj.

(a + n)p = ap + pn
(
k1a

p−1 + k2a
p−2n +⋯ + kt−1a

p−t+1nt−2
)

(a + n)p = ap + pnr,

yp1 = (x + n)p1 = xp1 + p1nr1,

yp1p2 = (xp1 + p1nr1)
p2 = xp1p2 + p2(p1nr1)r2,

yp1p2⋯pm = xp1p2⋯pm + (p1p2 ⋯ pm)n(r1r2 ⋯ rm),

ys = xs + sh,
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•	 By setting x + N = x , it is not difficult to see that H(0) = 0 , H(1) = 1 , H(2) = 7 , 
H(3) = 18 and H(4) = 24 . Since, 0, 1 and 4 are the quadratic residues in the ring 
ℤ25∕⟨5⟩ , then 0, 1 and 24 are quadratic residues in the ring ℤ25.

•	 Since (3 + N)2 = 4 + N in ℤ25∕⟨5⟩ . From proposition 2, it follows that the 
function � ∶ {3, 8, 13, 18, 23} → {4, 9, 14, 19, 24} given by �(x) = x2 mod (25) 
is a bijective function, in particular, all the elements in the equivalence class 
4 + N are quadratic residues in the ring ℤ25 . Thus, the only quadratic residue 
in the equivalence class 4 + N that is mapping by the function H is 24.

•	 Since H(1 + N + 1 + N) = 7 and H(1 + N) + H(1 + N) = 1 + 1 = 2 , then the 
function H is not in general a ring homomorphism.

It is to be noticed that the hypothesis in claim 1 of Proposition 5, which requires 
that all prime factors of s be greater or equal than the nilpotency index t of the 
ideal N, restricts enormously the number of applications of that proposition. For 
instance, if we consider R = ℤ2t with 2 ≤ t and N = ⟨2⟩ , it is clear that Nt = {0} 
and sN = {0} for s = 2t−1 . Thus, according to claim 1 of Proposition 5, in order 
to get quadratic residues in the ring R by computing the quadratic residues in the 
ring R∕N ≅ ℤ2 , it is necessary that t ≤ 2 , therefore t = 2 . Hence, we can only 
obtain quadratic residues in the ring ℤ4 , which is easily done by hand. In the fol-
lowing lines, we show how to overcome such restrictions.

Definition 1  [10, Definition 3.2] We say that a collection {N1, ...,Nk} of ideals of a 
ring R satisfies the CNC-condition if the following properties hold: 

1.	 Chain condition: {0} = Nk ⊂ Nk−1 ⊂ ⋯ ⊂ N2 ⊂ N1 ⊂ R.
2.	 Nilpotency condition: for i = 1, 2, 3,… , k − 1 , there exists ti ≥ 2 such that 

N
ti
i
⊂ Ni+1.

3.	 Characteristic condition: for i = 1, 2, 3,… , k − 1 , there exists si ≥ 1 such that 
siNi ⊂ Ni+1 . In addition, the prime factors of si are greater than or equal to ti.

The minimum number ti satisfying the nilpotency condition will be called the nil-
potency index of the ideal Ni in the ideal Ni+1 . Similarly, the minimum number si 
satisfying the characteristic condition will be called the characteristic of the ideal 
Ni in the ideal Ni+1.

The nilpotency condition and the characteristic condition of the previous defi-
nition can be stated as follows: 

a.	 The nilpotency condition is equivalent to the following condition: for 
i = 1, 2,… , k − 1 , Ni∕Ni+1 is a nilpotent ideal of index ti in the ring R∕Ni+1 , (for 
details see [10, Definition 3.2]).

ℤ25

⟨5⟩ ≅ ℤ5.
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b.	 The characteristic condition is equivalent to the following condition: for 
i = 1, 2,… , k − 1 , there exists a natural number si ≥ 1 such that si(Ni∕Ni+1) = 0 
in the ring R∕Ni+1 , (for details see [10, Definition 3.2]).

Theorem 6  Let R be a commutative ring, {N1,N2,… ,Nk} a collection of ideals of 
R satisfying the CNC-condition and let si be the characteristic of the ideal Ni in the 
ideal Ni+1 . If a + N1 is a quadratic residue in R∕N1 , then as1s2⋯sk−1 is a quadratic resi-
due in R. More precisely, if g ∈ R is such that (g + N1)

2 = a + N1 , then

Proof  Note first that since the ideals Ni satisfy the chain condition given in defini-
tion 1, for all i = 1, 2,… , k − 1 , the following isomorphism holds

In addition, since the ideals Ni satisfy the nilpotency condition and characteristic 
condition with characteristics si respectivelly, from claim 1 of proposition 5, it fol-
lows that for i = 1, 2,… , k − 1 , the functions

are well defined and multiplicative. Hence, if (g + N1)
2 = a + N1,

whence the identity in (15) is obtained. 	�  ◻

Remark 1  It follows from the proof of the Theorem (6) that, if a ∈ R is such that 
a + N1 is a quadratic residue in R∕N1 , then H1(a + N1) = as1 + N2 is a quadratic resi-
due in R∕N2 . In the same way, H2(a

s1 + N2) = as1s2 + N3 is a quadratic residue in 
R∕N3 , and so on. At the end of this process, it is obtained that as1s2⋯sk−1 is a quadratic 
residue in R. The following chain of multiplicative functions,

appears naturally in that process.

Theorem  7  Let R be a commutative ring with identity, {N1,N2,… ,Nk} a collec-
tion of ideals of R satisfying both the Chain condition and the Nilpotency condition. 
Assuming that 2 + N1 ∈ (R∕N1)

∗ , the following claims hold 

1.	 a + N1 ∈ q((R∕N1)
∗) if and only if a + N1 ⊂ q(R∗).

2.	 The cardinality of the set q(R∗) is given by 

(15)(gs1s2⋯sk−1)2 = as1s2⋯sk−1 .

(16)R∕Ni ≅
(R∕Ni+1)

(Ni∕Ni+1)
.

Hi ∶ R∕Ni → R∕Ni+1, Hi(x + Ni) = xsi + Ni+1

Hk−1◦⋯◦H1((g + N1)
2) = Hk−1◦⋯◦H1(a + N1),

R

N1

H1

�������→

R

N2

H2

�������→ ⋯

Hk−2

�������������→

R

Nk−1

Hk−1

�������������→

R

Nk

= R, with Hi(x + Ni) = xsi + Ni+1
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3.	 If a + N1 ∈ q((R∕N1)
∗) , then 

4.	 If for each i = 1, 2, 3,… , k − 1 , there exists �i such that, ∣ s(a + Ni) ∣= �i for all 
a + Ni ∈ q((R∕Ni)

∗) , then 

 In particular, 

Proof  1. It is easy to see that if a + N1 ⊂ q(R∗) , then a + N1 ∈ q((R∕N1)
∗) . Now, 

we proceed to prove the other implication of the statement. From the isomorphism 
given in (16), the fact that Ni∕Ni+1 is a nilpotent ideal of index ti in the ring R∕Ni+1 
and the fact that 2 + N1 ∈ (R∕N1)

∗ , from proposition (1), it follows that

for all i ∈ 1, 2, 3,… , k . Now, let b ∈ a + N1 , since b + N1 = a + N1 ∈ q((R∕N1)
∗) , it 

follows from the isomorphism

that (b + N2) + N1∕N2 ∈ q(((R∕N2)∕(N1∕N2))
∗) , thus, from claim 1 of proposition 3, 

it follows that

in particular, it is concluded that b + N2 ∈ q((R∕N2)
∗) . Similarly, from the 

isomorphism

it follows that (b + N3) + N2∕N3 ∈ q(((R∕N3)∕(N2∕N3))
∗) , thus, from item 1 of 

proposition 3, it follows that

in particular, we concluded that b + N3 ∈ q((R∕N3)
∗) . Continuing this process, it 

is finally shown that b + Nk = {b} ∈ q((R∕Nk)
∗) , which immediately implies that 

b ∈ q(R∗) . This shows that a + N1 ⊂ q(R∗) , as we wanted to prove.
2. From the isomorphism given in (16) and item 2 of proposition 3, it follows that

(17)∣ q(R∗) ∣=∣ N1 ∣∣ q((R∕N1)
∗) ∣

(18)s(a) = s(a + Nk−1) = ⋯ = s(a + N1).

(19)∣ (R∕Ni+1)
∗ ∣= �i ∣ q((R∕Ni+1)

∗) ∣ .

(20)∣ R∗ ∣= �k−1 ∣ q(R
∗) ∣ .

(2 + Ni+1) + Ni∕Ni+1 ∈ ((R∕Ni+1)∕(Ni∕Ni+1))
∗

R∕N1 ≅
(R∕N2)

(N1∕N2)
,

(b + N2) + N1∕N2 = {b + n + N2;n ∈ N1} ⊂ q((R∕N2)
∗),

R∕N2 ≅
(R∕N3)

(N2∕N3)
,

(b + N3) + N2∕N3 = {b + n + N3;n ∈ N2} ⊂ q((R∕N3)
∗),



1 3

São Paulo Journal of Mathematical Sciences	

thus from Lagrange’s theorem,

whence the identity in (17) is obtained.
3. Again, from the isomorphism given in (16), it follows that

for all i = 1, 2, 3,… , k − 1 . On the other hand, since Ni∕Ni+1 is 
a nilpotent ideal of index ti in the ring R∕Ni+1 and the fact that 
(2 + Ni+1) + Ni∕Ni+1 ∈ ((R∕Ni+1)∕(Ni∕Ni+1))

∗ , from claim 3 of proposition 3, it fol-
lows that

for i = 1, 2, 3,… , k − 1 . From the previous identities, it follows that 
s(a + Ni) = s(a + Ni+1) for i = 1, 2, 3,… , k − 1 , this of course implies the equalities 
appearing in (18).

4. It follows from the isomorphism given in (16) and claim 4 of proposition 3 that

Since, ∣ s(a + Ni) ∣= �i , it is deduced from the former identity that

Finally, identity in (19) follows from (21). 	�  ◻

4 � Applications of the main results

In this section Theorems 6 and 7 will be used in order to describe properties of 
the set of invertible quadratic residues for several classes of rings which include: 
rings containing a nilpotent ideal; group rings RG where R is a commutative ring 
containing a collection of ideals satisfying the CNC-condition and G is a com-
mutative group; polynomial ring R[x] where R is a commutative ring containing a 
collection of ideals satisfying the CNC-condition. Examples are given illustrating 
the results.

(21)∣ Ni∕Ni+1 ∣∣ q((R∕Ni)
∗) ∣=∣ q(((R∕Ni+1)∕(Ni∕Ni+1))

∗) ∣=∣ q((R∕Ni+1)
∗) ∣,

∣ q(R∗) ∣=∣ q((R∕Nk)
∗) ∣ =

∣ Nk−1 ∣

∣ Nk ∣
∣ q((R∕Nk−1)

∗) ∣

=
∣ Nk−1 ∣

∣ Nk ∣

∣ Nk−2 ∣

∣ Nk−1 ∣
⋯

∣ N1 ∣

∣ N2 ∣
∣ q((R∕N1)

∗) ∣,

s(a + Ni) = s(a + Ni+1 + Ni∕Ni+1)

s(a + Ni+1 + Ni∕Ni+1) = s(a + Ni+1).

∣ (R∕Ni+1)
∗ ∣=∣ Ni∕Ni+1 ∣

∑

a+Ni∈q((R∕Ni)
∗)

∣ s(a + Ni) ∣ .

∣ (R∕Ni+1)
∗ ∣= �i ∣ Ni∕Ni+1 ∣∣ q((R∕Ni)

∗) ∣ .
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4.1 � Rings containing a nilpotent ideal

If R is a commutative ring containing a nilpotent ideal N, by invoking Theorems 
6 and 7, properties of the set of invertible quadratic residues of the ring R are 
described.

Proposition 8  Let R be a commutative ring and N a nilpotent ideal of nilpotency 
index k ≥ 2 in R. Then, the following statements hold, 

1.	 Let s > 1 be the characteristic of the quotient ring R/N. If a + N is a quadratic 
residue in R/N, then ask−1 is a quadratic residue in R. More precisely, if g ∈ R is 
such that (g + N)2 = a + N , then 

2.	 Assuming that 2 + N ∈ (R∕N)∗ , the following claims hold, 

	 a).	 a + N ∈ q((R∕N)∗) if and only if a + N ⊂ q(R∗).
	 b).	 The cardinality of the set q(R∗) is given by 

	 c).	 If a + N ∈ q((R∕N)∗) , then 

	 d).	 If there exists � such that, |s(a + N)| = � for all a + N ∈ q((R∕N)∗) , then 

 In particular, 

Proof  First it is shown that the collection B = {N,N2, ...,Nk} of ideals of the ring R 
satisfies the CNC-condition with nilpotency index and characteristic of the ideal Ni 
in the ideal Ni+1 being ti = 2 and si = s for all i = 1, 2, 3,… , k − 1 . Thus, 

1.	 It is clear that the collection B satisfies the chain condition.
2.	 Since (Ni)2 = N2i and i + 1 ≤ 2i for all i = 1, 2, 3,… , k − 1 , it follows that 

(Ni)2 ⊂ Ni+1 . Hence, the collection B satisfies the nilpotency condition.
3.	 Since the ring R/N has characteristic s, there exists n ∈ N such that 

∑s

i=1
1R = n . 

Since 

(22)
(
gs

k−1
)2

= as
k−1

.

(23)∣ q(R∗) ∣=∣ N ∣∣ q((R∕N)∗) ∣

(24)s(a) = s(a + Nk−1) = ⋯ = s(a + N).

(25)∣ (R∕Ni+1)∗ ∣= � ∣ q((R∕Ni+1)∗) ∣ .

(26)∣ R∗ ∣= � ∣ q(R∗) ∣ .

(27)sNi = (1R +⋯ + 1R)N
i = nNi ⊂ Ni+1,
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 it follows that sNi ⊂ Ni+1 for all i = 1, 2, 3,… , k − 1 . In addition, all prime fac-
tors of si = s are greater or equal to the nilpotency index ti = 2 , proving that the 
collection B satisfies the characteristic condition.

Therefore, the proof of this proposition is now a clear consequence of Theorems 
6 and 7 	� ◻

Example 1  Let p be an odd prime number, i ∈ ℕ and let R = {a + bu:a, b ∈ ℤpi , u2 = 0} . It 
is readily seen that R with the (obvious) addition and multiplication operations is a 
commutative ring with cardinality |R| = p2i . It is also easily seen that R is isomor-
phic to the ring of polynomials with coefficients in ℤpi modulo the ideal generated 
by x2 , that is ℤpi[x]∕⟨x2⟩ . It is readely seen that

so the cardinality of R∗ is ∣ R∗ ∣= �(pi)pi = (p − 1)p2i−1 , where � denotes the Euler 
totient function. On the other hand, it is verified that the ideal N = ⟨p, u⟩ has nilpo-
tency index k = i + 1 and that ∣ N ∣= p2i−1 , then it follows that N is a maximal ideal 
of R with

whence ∣ (R∕N)∗ ∣= p − 1 and the characteristic of the quotient ring R/N is s = p . 
From the latter isomorphism and proposition 8, it is concluded that

•	 a + bu ∈ q(R∗) if and only if a mod (p) ∈ q(ℤ∗
p
).

•	 Let a + bu ∈ R if a mod (p) ∈ q(ℤ∗
p
) then for all b ∈ ℤpi

 is an invertible quadratic residue in R.
•	 The number of invertible quadratic residues of the ring R is given by 

•	 Let a + bu ∈ R , if a mod (p) ∈ q(ℤ∗
p
) then for all b ∈ ℤpi the number of solu-

tions in R of the equation x2 = a + bu is equal to 2, in other words 

An easy application of the previous result is the following:

Corollary 9  Let R be a commutative ring and c a nilpotent element of index k ≥ 2 in 
R. Then, the following statements hold: 

R∗ = {a + bu;a ∈ (ℤpi )
∗, b ∈ ℤpi},

R

N
≅ ℤp,

(a + bu)p
i

= (a mod (p))p
i

∣ q(R∗) ∣=∣ N ∣∣ q((R∕N)∗) ∣=
p2i−1(p − 1)

2

s(a + bu) = 2.
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1.	 Let s > 1 be the characteristic of the quotient ring R∕⟨c⟩ . If a + ⟨c⟩ is a quadratic 
residue in R∕⟨c⟩ , then ask−1 is a quadratic residue in R. More precisely, if g ∈ R is 
such that (g + ⟨c⟩)2 = a + ⟨c⟩ , then 

2.	 Assuming that 2 + ⟨c⟩ ∈ (R∕⟨c⟩)∗ , the following claims hold: 

a.	 a + ⟨c⟩ ∈ q((R∕⟨c⟩)∗) if and only if a + ⟨c⟩ ⊂ q(R∗).
b.	 The cardinality of the set q(R∗) is given by 

c.	 If a + ⟨c⟩ ∈ q((R∕⟨c⟩)∗) , then 

d.	 If there exists � such that ∣ s(a + ⟨c⟩) ∣= � for all a + ⟨c⟩ ∈ q((R∕⟨c⟩)∗) , then 

 In particular, 

Proof  Since R is a commutative ring, ⟨c⟩ is a nilpotent ideal of nilpotency index k in 
R, and the result follows immediately from Proposition 8	�  ◻

4.2 � Group rings

If R is a commutative ring containing a collection of ideals satisfying the CNC-con-
dition and G is a commutative group, by invoking Theorems 6 and 7, properties of 
the set of invertible quadratic residues of the group ring RG are described.

Proposition 10  Let R be a commutative ring and G a commutative group. Let 
{N1,N2,… ,Nk} be a collection of ideals of R satisfying the CNC-condition. Then, 
the following statements hold: 

1.	 Let si be the characteristic of the ideal Ni in the ideal Ni+1 . If a + N1G is a quad-
ratic residue in (R∕N1)G , then as1s2⋯sk−1 is a quadratic residue in RG. More pre-
cisely, if g ∈ RG is such that (g + N1G)

2 = a + N1G , then 

2.	 Assuming that 2 + N1G ∈ ((R∕N1)G)
∗ , then the following claims hold: 

(28)
(
gs

k−1
)2

= as
k−1

.

(29)∣ q(R∗) ∣=∣ ⟨c⟩ ∣∣ q((R∕⟨c⟩)∗) ∣ .

(30)s(a) = s(a + ⟨ck−1⟩) = ⋯ = s(a + ⟨c⟩).

(31)∣ (R∕⟨ci+1⟩)∗ ∣= � ∣ q((R∕⟨ci+1⟩)∗) ∣ .

(32)∣ R∗ ∣= � ∣ q(R∗) ∣ .

(33)(gs1s2⋯sk−1)2 = as1s2⋯sk−1 .
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a.	 a + N1G ∈ q(((R∕N1)G)
∗) if and only if a + N1G ⊂ q((RG)∗).

b.	 The cardinality of the set q((RG)∗) is given by 

c.	 If a + N1G ∈ q(((R∕N1)G)
∗) then, 

d.	 If there exists � such that |s(a + N1G)| = � for all a + N1G ∈ q(((R∕N1)G)
∗) 

then, 

 for i = 1, 2,⋯ , k − 1 . In particular, 

Proof  In [11] (Proposition 4.9), it is shown that the collection

of ideals of the ring RG satisfies the CNC-condition with nilpotency index and 
characteristic of the ideal NiG in the ideal Ni+1G being exactly the same nilpotency 
index and characteristic of the ideal Ni in the ideal Ni+1 . Therefore, the proof of this 
proposition is a direct conequence of Theorems 6 and 7. 	�  ◻

Corollary 11  Let G be a commutative group, R be a commutative ring and N a nilpo-
tent ideal of index k in R. Then, the following statements hold: 

1.	 Let s > 1 be the characteristic of the quotient ring R/N. If a + NG is a quadratic 
residue in (R/N)G, then ask−1 is a quadratic residue in RG. More precisely, if 
g ∈ RG is such that (g + NG)2 = a + NG , then 

2.	 Assuming that 2 + NG ∈ ((R∕N)G)∗ , the following claims hold 

a.	 a + NG ∈ q(((R∕N)G)∗) if and only if a + NG ⊂ q((RG)∗).
b.	 The cardinality of the set q((RG)∗) is given by 

c.	 If a + NG ∈ q(((R∕N)G)∗) , then 

(34)∣ q((RG)∗) ∣=∣ N1 ∣
∣G∣∣ q(((R∕N1)G)

∗) ∣ .

(35)s(a) = s(a + Nk−1G) = ⋯ = s(a + N1G).

(36)∣ ((R∕Ni+1)G)
∗ ∣= � ∣ q(((R∕Ni+1)G)

∗) ∣,

(37)∣ (RG)∗ ∣= � ∣ q((RG)∗) ∣ .

B = {N1G,N2G,… ,NkG}

(38)
(
gs

k−1
)2

= as
k−1

.

(39)∣ q((RG)∗) ∣=∣ N ∣∣G∣∣ q(((R∕N)G)∗) ∣ .

(40)s(a) = s(a + Nk−1G) = ⋯ = s(a + NG).
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d.	 If there exists � such that ∣ s(a + NG) ∣= � for all a + NG ∈ q(((R∕N)G)∗) 
then, 

 for i = 1, 2,⋯ , k − 1 . In particular, 

Proof  The proof of this corollary is a direct consequence of Proposition 10 and the 
fact that the collection {N,N2, ...,Nk} of ideals of the ring R satisfies the CNC-con-
dition with constant characteristic si = s for all i = 1, 2, 3,⋯ , k − 1 . 	�  ◻

Example 2  Let p be an odd prime number, i ∈ ℕ and let R = {a + bu:a,
b ∈ ℤpi , u2 = 1} be the group ring ℤpiG where G = {1, u} is the cyclic group of 
order n = 2 . It is readily seen that R with the (obvious) addition and multiplication 
operations is a commutative ring with cardinality ∣ R ∣= p2i . It is also easily seen that 
R is isomorphic to the ring of polynomials with coefficients in ℤpi modulo the ideal 
generated by x2 − 1 in R, that is ℤpiG ≅ ℤpi[x]∕⟨x2 − 1⟩ . It is readily seen that

so the cardinality of (ℤpG)
∗ is ∣ (ℤpG)

∗ ∣= (p − 1)2 . In addition, since N = ⟨p⟩ has 
nilpotency index k = i in ℤpi , and

then it is deduced that ∣ (ℤpiG)
∗ ∣=∣ (ℤpG)

∗ ∣∣ ⟨p⟩G ∣= (p − 1)2p2(i−1) . From the lat-
ter isomorphism and the proposition 11, it is concluded that:

•	 a + bu ∈ q((ℤpiG)
∗) if and only if (a mod (p)) + (b mod (p))u ∈ q((ℤpG)

∗).
•	 Let a + bu ∈ ℤpiG , if (a mod (p)) + (b mod (p))u ∈ q((ℤpG)

∗) , then 

 is an invertible quadratic residue in R = ℤpiG.
•	 The number of invertible quadratic residues of the ring R is given by 

•	 Let a + bu ∈ ℤpiG , if (a mod (p)) + (b mod (p))u ∈ q((ℤpG)
∗) and 

∣ s((a mod (p)) + (b mod (p))u) ∣= � , then 

(41)∣ ((R∕Ni+1)G)∗ ∣= � ∣ q(((R∕Ni+1)G)∗) ∣,

(42)∣ (RG)∗ ∣= � ∣ q((RG)∗) ∣ .

(ℤpG)
∗ = {a + bu ∶ a ≠ b, a ≠ −b},

ℤpiG

⟨p⟩G ≅ ℤpG,

(a + bu)p
i−1

= ((a mod (p)) + (b mod (p))u)p
i−1

∣ q((ℤpiG)
∗) ∣=∣ N ∣∣G∣∣ q((ℤpG)

∗) ∣= p2(i−1) ∣ q((ℤpG)
∗) ∣

∣ s(a + bu) ∣= �.
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 If additionally, ∣ s((a mod (p)) + (b mod (p))u) ∣= � for all 
(a mod (p)) + (b mod (p))u ∈ q((ℤpG)

∗) then, 

For instance, if p = 3 , it is easy to see that q((ℤ3G)
∗) = {1} and the number of solu-

tions in ℤ3G of the equation x2 = 1 is equal to 4, in other words |s(1)| = 4 . Thus, if 
a + bu ∈ ℤ3iG is such that a ≡ 1 mod (3) and b ≡ 0 mod (3) , then

∣ s(a + bu) ∣= 4 , ∣ q((ℤ3iG)
∗) ∣= 32(i−1) and ∣ (ℤ3iG)

∗ ∣= (4)32(i−1).
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1. Introduction

Circulant matrices ([4]) have received considerable attention of several research

groups for their own right and for their potential applications including image

processing, communications, network systems, signal processing, coding theory and

cryptography ([8],[9]).

Twistulant matrices were introduced as a generalization of circulant matrices,

and algebraic structures of these matrices over the complex numbers have been

determined ([6]).

In this note, following [6] right (left) β-twistulant matrices over a ring are intro-

duced and focus on given group structures of these matrices. The manuscript is

organized as follows: in Section 2 the definition of right (left) β-twistulant matrices

and basic results are given. Section 3 is devoted to the group structure of subsets of

the introduced matrices. In [6] the mentioned matrices are defined over the complex

numbers, C, but in our case the results are presented over any commutative ring R.

Later, in Section 4, the ring R will be taken to be a field with particular properties,
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the second author was partially supported by the fellowship number 764803 from Consejo Nacional

de Humanidades, Ciencias y Tecnoloǵıas (CONAHCYT), México.
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placing special emphasis on the case of a finite field. In Section 5 several examples

are presented illustrating the main results. Final comments are given in Section 6.

2. Twistulant matrices

Let R be a commutative ring and Rn be the cartesian product for n > 1. Let

σ : Rn −→ Rn be the permutation σ(a0, a1, . . . , an−1) = (an−1, a0, . . . , an−2).

Observe that σn = I, where σ is applied n times and I is the identity permutation,

from which it follows that τ := σ−1 = σn−1 is the permutation on Rn given by

τ(a0, a1, . . . , an−1) = (a1, a2, . . . , a0). For an element a = (a0, a1, . . . , an−1) ∈ Rn

consider the matrix

circσ(a) = (a, σ(a), . . . , σn−1(a))t,

where (X)t denotes the transpose matrix of X. This matrix is called the right-

circulant matrix. Similarly the matrix

circτ (a) = (a, τ(a), . . . , τn−1(a))t,

is called the left-circulant matrix.

Now we introduce the β-twistulant matrices. Let β ∈ R \ {0} and consider

the following map on Rn, σβ : Rn −→ Rn defined by σβ(a0, a1, . . . , an−1) =

(βan−1, a0, . . . , an−2). It is readily seen that this map is a permutation on Rn.

Observe that the map σβ : Rn −→ Rn can also be defined, by

σβ(a) =
(
a0 a1 . . . an−1

)


0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . .

...

0 0 0 . . . 1

β 0 0 . . . 0


= aJβ .

Let Mn(R) be the set of square matrices over R. We define the map rcircβ :

Rn −→Mn(R) by

rcircβ(a) =
(
a aJβ . . . aJn−1β

)t
,

where (∗)t indicates the matrix operation transpose and aJjβ = (aJj−1β )Jβ for

j = 1, . . . , n − 1 with the convention aJ0
β = a. By definition rcircβ is R-linear.

Notice ker(rcircβ) = {0} for all β ∈ R\ {0}. The set of right β-twistulant matrices

of order n is defined as RCn,β(R) = {rcircβ(a) | a ∈ Rn}.
The set of left β-twistulant matrices is defined in a similar way.
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Example 2.1. Let R be a commutative ring, a = (a0, a1, a2, a3) ∈ R4 and β ∈
R \ {0}. Then

rcircβ(a) =


a

aJβ

aJ2
β

aJ3
β

 =


a0 a1 a2 a3

βa3 a0 a1 a2

βa2 βa3 a0 a1

βa1 βa2 βa3 a0

 .

An example of a left β-twistulant matrix can be given likewise.

Notice that a circulant (and negacirculant) matrix is a special case of a β-

twistulant matrix when β ∈ {1,−1}. Furthermore, the β-twistulant matrices are a

subclass of the so-called vector-circulant matrices ([7]).

Let

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

... . . .
...

an,1 an,2 . . . an,n

 ∈Mn(R).

Recall that the anti-diagonal ofA is given by the elements a1,n, a2,n−1, . . . , an−1,2, an,1.

The transpose of A with respect to its anti-diagonal, denoted by Aτ , is defined as,

Aτ =


an,n an−1,n . . . a1,n

an,n−1 an−1,n−1 . . . a1,n−1
...

... . . .
...

an,1 an−1,1 . . . a1,1

 .

Example 2.2. Let R = Z9 and A ∈M3(R) given by

A =


1 0 8

2 3 5

0 6 4

 then Aτ =


4 5 8

6 3 0

0 2 1

 .

We have the usual properties (Aτ )τ = A and (A + B)τ = Aτ + Bτ for A,B ∈
Mn(R). The definition can be extended to

(
r0 r1 . . . rn−1

)
∈M1×n(R) by

(
r0 r1 . . . rn−1

)τ
=


rn−1

...

r1

r0

 ∈Mn×1(R).

Remark 2.3. We observe, by construction that, Jτβ = Jβ , in other words Jβ is

symmetric with respect to this transpose operation.
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Let R be any commutative ring, consider the ring Rn,β = R[x]/〈xn − β〉 and

define the polynomial representation map of Rn as follows,

Pβ : Rn −→ Rn,β , Pβ(a) = a0 + a1x+ · · ·+ an−1x
n−1.

It is easily seen that the map Pβ is an isomorphism ofR-modules. Further, applying

the permutation σβ introduced above to an element of Rn, it has the same effect as

multiplying by x the corresponding polynomial. In the study of constacyclic codes

this mapping is vital when β is a unit of the ring.

We recall the following ([1],[3]). Let R be a commutative ring. A linear code

of length n over R is just an R-submodule of Rn. For β a unit of the ring R,

a linear code C over R is β-constacyclic if for any c = (c0, c1, . . . , cn−1) ∈ C,
σβ(c) = (βcn−1, c0, . . . , cn−2) ∈ C. Thus the concepts of a β-twistulant matrix and

β-constacyclic code are related objects.

It is worth mentioning that the concept of β-constacyclic codes is related to the

ring Rn,β , as shown by the following result ([1]).

Proposition 2.4. Let β be a unit of the ring R. Then a linear code over R is

β-constacyclic if and only if its image under the map Pβ is an ideal of the ring

Rn,β.

Let a = (a0, a1, . . . , an−1) ∈ Rn, then a =
∑n
i=1 ai−1ei. It is clear that

rcircβ(a) =
∑n
i=1 ai−1 rcircβ(ei), where {ei | i = 1, 2, . . . , n} is the set of canonical

generators of Rn.

Proposition 2.5. Let R be any commutative ring and β ∈ R.

• Let A ∈Mn(R) with rows A1, A2, . . . , An. Then

AJβ =
(
A1Jβ A2Jβ . . . AnJβ

)t
.

• rcircβ(e1) = In, where In is the identity matrix of order n in Mn(R).

• rcircβ(ej+1) = Jjβ, j = 1, . . . , n− 1.

• ej = e1J
j−1
β .

Proof. The first claim follows from the definitions. For the second and third claims,

it is enough to notice ejJβ = ej+1 for i = 1, . . . , n − 1 while enJβ = βe1. As a

consequence, ei+1 = e1J
i
β , i = 1, . . . , n−1 and hence ejJβ = e1J

j
β , j = 1, . . . , n−1.
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With these facts,

Jβ =



e2

e3

...

en

βe1


= rcircβ(e2) =



e1Jβ

e2Jβ
...

en−1Jβ

enJβ


.

From the first claim,

Jjβ =



e1J
j
β

e2J
j
β

...

en−1J
j
β

enJ
j
β


= rcircβ(e1J

j
β) = rcircβ(ej+1),

for j = 1, 2, . . . , n− 1. �

Corollary 2.6. With the same hypothesis as in Proposition 2.5,

rcircβ(enJβ) = Jnβ = βIn.

As consequence, if β ∈ U(R) is a unit of finite multiplicative order, o(β), J
o(β)n
β =

In. A similar consequence arises if the ring R is such that β is a non-unit with

finite nilpotency index.

Proof. Since Jnβ = Jn−1β Jβ = rcircβ(en)Jβ = rcircβ(enJβ) = rcircβ(βe1) = βIn, it

is clear by Proposition 2.5. �

Now we define the following subsets of the R-algebra Mn(R) of n× n matrices

over the commutative ring R.

RCn,β(R) = {rcircβ(a) : a ∈ Rn}, RCn,β(R) = {A ∈ RCn,β(R) : det(A) is a unit}.

3. Structure of β-twistulant matrices

By the R-linearity of the homomorphism rcircβ , RCn,β(R) is generated as an R
module by the set

{rcircβ(e1), rcircβ(e2), . . . , rcircβ(en)}. Indeed, given a = (a0, a1, . . . , an−1) =

a0e1 + a1e2 + . . .+ an−1en, then

rcircβ(a) = a0 rcircβ(e1) + a1 rcircβ(e2) + . . .+ an−1 rcircβ(en).

From Proposition 2.5 we have,
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Proposition 3.1. Given β ∈ R, the R-module RCn,β is generated by

A = {In, Jβ , . . . , Jn−1β : Jnβ = βIn},

i.e., given a = (a0, a1, . . . , an−1) ∈ Rn,

rcircβ(a) = a0In + a1Jβ + · · ·+ an−1J
n−1
β .

We know from Remark 2.3 that the matrix Jβ is symmetric under the transpose

with respect to its antidiagonal. The following is a direct consequence from this

fact.

Corollary 3.2. Let R be a commutative ring with identity. Given

a = (a0, a1, . . . , an−1) ∈ Rn, then rcircβ(a)τ = rcircβ(a).

Proposition 3.3. Let β ∈ R. Then (RCn,β(R),+,×, ·) is a finitely generated

commutative R-algebra.

Proof. It is clear that (RCn,β(R),+) is an R-module. From Proposition 3.1,

(RCn,β(R),+,×, ·) is closed under the operation multiplication of matrices, ×, as

from Corollary 2.6, given r, s ∈ R,

rJ iβsJ
j
β = rsJ i+jβ = rsJ tn+kβ = βaJkβ for some integer a and 0 ≤ k ≤ n− 1.

Next we prove that given a,b ∈ Rn, rcircβ(a) rcircβ(b) = rcircβ(b) rcircβ(a), that

is clear by Proposition 2.5: rcircβ(ei+1) rcircβ(ej+1) = J iβJ
j
β = J i+jβ . �

Now we establish the following,

Theorem 3.4. If rcircβ(a) ∈ RCn,β(R) is invertible, then rcircβ(a)−1 ∈ RCn,β(R).

In other words, the set of invertible elements RCn,β(R) is an abelian group.

Proof. Let a = (a0, a1, . . . , an−1) ∈ Rn be such that rcircβ(a) ∈ RCn,β(R) is

invertible. Let A = rcircβ(a)−1 with rows A1, A2, . . . , An. From Proposition 3.1,

rcircβ(a) = a0In + a1Jβ + . . .+ an−1J
n−1
β and

A rcircβ(a) = a0A+ a1AJβ + . . .+ an−1AJ
n−1
β = In = rcircβ(e1).

From Proposition 2.5,

a0A1 + a1A1Jβ + . . .+ an−1A1J
n−1
β =

(
1 0 . . . 0

)
= e1,

hence,

a0A1J
j−1
β + a1(A1Jβ)Jj−1β + · · ·+ an−1(A1J

n−1
β )Jj−1β = ej = e1J

j−1
β .
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Then in matrix notation,

a0


A1

A1Jβ
...

A1J
n−1
β

+ a1


A1

A1Jβ
...

A1J
n−1
β

 Jβ + · · ·+ an−1


A1

A1Jβ
...

A1J
n−1
β

 Jn−1β = In,

hence, 
A1

A1Jβ
...

A1J
n−1
β

 rcircβ(a) = In,

i.e., A−1 = rcircβ(A1) which implies that rcircβ(a)−1 ∈ RCn,β(R). �

It is worth mentioning that β could be a non-unit in the ring R and rcircβ(r)

still be invertible as shown in the following example:

Example 3.5. Let R = Z4, β = 2 ∈ R and let a = (1, 1, 0) ∈ R3. Then

Jβ =


0 1 0

0 0 1

2 0 0

 and rcircβ(a) =


1 1 0

0 1 1

2 0 1

 ,

obtaining det(rcircβ(a)) = 3 ∈ U(R) and therefore rcircβ(a) is invertible. In fact

rcircβ(a)−1 =


3 1 3

2 3 1

2 2 3

 .

Observe that if the first row of the matrix rcircβ(a)−1 is known, the matrix can

be obtained with the method described in the proof of Theorem 3.4.

4. Twistulant matrices over fields

Now assume the ring R is a field. In the following lines by using a method based

on the discrete Fourier transform (DFT) it will be seen that Proposition 3.3 and

Theorem 3.4 also hold.

In the case where the field is C, the field of complex numbers, following section

3.2 of [4] we recall the special case in which β = 1. In this case the circulant

matrices are diagonalizable over C via the discrete Fourier transform matrix F .
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Recall (see [5], [2]) that over C, the Discrete Fourier Transform matrix is,

F =
1√
n



1 1 1 . . . 1

1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

... . . .
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)


where ω is a primitive nth-root of unity and 1√

n
is a normalization factor. Notice F

is a Vandermonde type of matrix, and therefore, invertible. These considerations

can be extended to circulant matrices over a finite field Fq (see [10] for instance)

provided there is an nth-root of unity ω ∈ Fq. For our discussion, the constant 1√
n

is not relevant and it is omitted.

Theorem 4.1. Let F be a field containing an nth-root of unity, ω ∈ F, and let

J =


e2

e3

...

e1

 ∈Mn(F).

Then J is diagonalizable by the Discrete Fourier Transform matrix F , indeed

F−1JF = diag(1, ω, ω2, . . . , ωn−1) = Dω.

Proof. The claim follows from

JF =



1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

... . . .
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)

1 1 1 . . . 1


= FDω.

�

Corollary 4.2. Circulant matrices in Mn(F) are diagonalizable over any field F
that contains an nth-root of unity.

Proof. Given F−1JF = diag(1, ω, ω2, . . . , ωn−1) = Dω, from Proposition 3.1 with

β = 1, for a = (a0, a1, . . . , an−1) ∈ Fn,

F−1 rcirc(a)F = a0In + a1Dω + . . .+ an−1D
n−1
ω

which is a diagonal matrix. �
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Example 4.3. Over the field F19, in M6(F19) the matrix

J =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0


is diagonalizable by means of the discrete Fourier transform matrix

F =



1 1 1 1 1 1

1 8 7 18 11 12

1 7 11 1 7 11

1 18 1 18 1 18

1 11 7 1 11 7

1 12 11 18 7 8


whose inverse is F−1 =



16 16 16 16 16 16

16 2 5 3 17 14

16 5 17 16 5 17

16 3 16 3 16 3

16 17 5 16 17 5

16 14 17 3 5 2


,

such that, F−1JF = diag(1, 8, 7, 18, 11, 12).

Let n be a positive integer, Fq a finite field with q = pm elements and β ∈ Fq
be such that an nth-root of this element is in the field Fq. In case this does not

happen, the splitting field of the polynomial xn − β is considered. The splitting

field is of finite order n over the base field Fq and it has |Fq|n elements. So we can

assume the field we are working on contains an nth-root of the element β.

Suppose β ∈ F is such that there exist λ1 = β
1
n ∈ F. Define λk = β

k
n , k =

2, . . . , n− 1 and let ω ∈ F be an nth-root of unity. Let F ∈Mn(F) be defined by

F =



1 1 1 . . . 1

λ1 λ1ω λ1ω
2 . . . λ1ω

n−1

λ2 λ2ω
2 λ2ω

4 . . . λ2ω
2(n−1)

...
...

... . . .
...

λn−1 λn−1ω
n−1 λn−1ω

2(n−1) . . . λn−1ω
(n−1)(n−1)


. (∗)

Lemma 4.4. The matrix F ∈ Mn(F) is non-singular and hence invertible. Fur-

thermore,

F−1 = F−1Dλ−1
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where Dλ = diag(1, λ1, λ2, . . . , λn−1) and, for ω an nth-root of unity in F,

F =



1 1 1 . . . 1

1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

... . . .
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)


.

Proof. Let Dλ = diag(1, λ1, λ2, . . . , λn−1). The claim follows from the fact that

F = DλF , and then det(F) = det(DλF ). As F is a Vandermonde type of ma-

trix, it is non-singular over any field containing an n-th root of unity, and there-

fore invertible. Now F−1 = (DλF )−1 = F−1D−1λ = F−1Dλ−1 , where Dλ−1 =

diag(1, λ−11 , λ−12 , . . . , λ−1n−1). �

Theorem 4.5. Let β ∈ F and F be as above and assume there is λ1 = β
1
n ∈ F.

Let

Jβ =


e2

e3

...

βe1

 ∈Mn(F),

and suppose ω ∈ F is an nth-root of unity. Then, Jβ is diagonalizable by F and

F−1JβF = λ1Dω.

Proof. It is enough to notice

JβF =



λ1 λ1ω λ1ω
2 . . . λ1ω

n−1

λ2 λ2ω
2 λ2ω

4 . . . λ2ω
2(n−1)

...
...

... . . .
...

λn−1 λn−1ω
n−1 λn−1ω

2(n−1) . . . λn−1ω
(n−1)(n−1)

β β β . . . β


= Fλ1Dω,

computation that follows easily from the fact that multiplying the square matrix

F (see (∗)) on the right by the diagonal matrix λ1Dω = (λ1, λ1ω, . . . , λ1ω
n−1) is

equivalent to multiplying each column of F by the i-th element of the diagonal and

observing that λn−1λ1 = β
n−1
n β

1
n = β. �

Corollary 4.6. Let F be a field with an nth-root of unity and let 0 6= β ∈ F. Assume

there is λ1 = β
1
n ∈ F. Then,

(1) The matrix rcircβ(a) ∈Mn(F) is diagonalizable over the field F.

(2) For any A,B ∈ RCn,β(F), AB ∈ RCn,β(F) and AB = BA.
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(3) If rcircβ(a) ∈ RCn,β(F), rcircβ(a)−1 ∈ RCn,β(F). Further,

rcircβ(a)−1 = F(a0In + a1λ1Dω + . . . an−1λ
n−1
1 Dn−1

ω )−1F−1.

Note that a0In+a1λ1Dω + . . .+an−1λ
n−1
1 Dωn−1 is a diagonal matrix and hence

easily invertible in a field. It can be seen that each element of the diagonal is

the evaluation of f(X) = a0 + a1λ1X + a2λ
2
1X

2 + . . . + an−1λ
n−1
1 Xn−1 at ωi for

i = 0, 1, . . . , n − 1. In other words, the diagonal elements are the values of the

discrete Fourier transform of the vector (a0, a1λ1, . . . , an−1λ
n−1
1 ).

Corollary 4.7. With the same hypothesis as in the previous corollary, assume

Jβ ∈Mn(F) is diagonalizable. Then given a = (a0, a1, . . . , an−1),

det[rcircβ(a)] = det(a0In + a1λ1Dω + . . .+ an−1λ
n−1
1 Dωn−1).

5. Examples

In this section several examples are provided illustrating the main results. The

software SageMath ([11]) has been used for computations.

Example 5.1. Let β = 12 and consider the 3th-root of the unity ω = 7 ∈ F19. If

λ1 = β
1
3 = 10, then

F−1JβF =


10 0 0

0 13 0

0 0 15

 ,

where

F =


1 1 1

10 13 15

5 17 16

 and F−1 =


13 7 14

13 1 3

13 11 2

 .

Example 5.2. Consider the finite field F11, let β = 10 and ω = 9 a 5th-root of

unity. Then J10 ∈M5(F11) is diagonalizable. Let λ1 = 7, then

F =



1 1 1 1 1

7 8 6 10 2

5 9 3 1 4

2 6 7 10 8

3 4 9 1 5


and F−1 =



9 6 4 10 3

9 8 1 7 5

9 7 3 6 1

9 2 9 2 9

9 10 5 8 4


.

Thus F−1J10F = 7D9 = diag(7, 8, 6, 10, 2). On the contrary, if β = 6, then J6 ∈
M5(F11) is not diagonalizable since λ5 − 6 = 0 has no solution in F11.
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Example 5.3. Consider the field F11 and let a = (3, 2, 1, 0, 2) ∈ F5
11. With the

parameters given in the previous example, i.e., β = 10, ω = 9 and λ1 = 7,

rcirc10((a)) =



3 2 1 0 2

9 3 2 1 0

0 9 3 2 1

10 0 9 3 2

9 10 0 9 3


,

and from the Corollary 4.6

rcirc10(3, 2, 1, 0, 2)−1 = F [3I5 +2(λ1D9)+1(λ1D9)2 +0(λ1D9)3 +2(λ1D9)4]−1F−1,

where F and F−1 are given in the mentioned example. Thus,

rcirc10(3, 2, 1, 0, 2)−1 =



9 2 2 4 9

2 9 2 2 4

7 2 9 2 2

9 7 2 9 2

9 9 7 2 9


.

It can be seen that, for instance the third element in the diagonal matrix
∑4
i=0 ai(λ1Dω)i

is, f(ω2) = a0+a1λ1ω
2+a2λ

2
1ω

2·2+a3λ
3
1ω

2·3+a4λ
4
1ω

2·4, i.e., f(ω2) = 3+1+3+7 =

3. In the same fashion it can be seen that f(ω3) = 4 and f(ω4) = 10, and also,

from Corollary 4.7, det(rcirc10(a)) = 4 = det(diag(6, 3, 3, 4, 10)).

Example 5.4. Consider the finite field F9 = F3[X]/〈X2 + 2X + 2〉 with 32 = 9

elements. Then F9 = {a0 + a1x | a0, a1 ∈ F3, x
2 + 2x+ 2 = 0. Let ω = 1 + x ∈ F9

which is a 4th-root of unity and let β = 2. Note that λ1 = 2
1
4 = x ∈ F9. Then,

J2 =


0 1 0 0

0 0 1 0

0 0 0 1

2 0 0 0

 ,

while

F =


1 1 1 1

x 1 + 2x 2x 2 + x

1 + x 2 + 2x 1 + x 2 + 2x

1 + 2x x 2 + x 2x

 and F−1 =


1 2 + x 2 + 2x 2x

1 2x 1 + x 2 + x

1 1 + 2x 2 + 2x x

1 x 1 + x 1 + 2x

 .
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Then, F−1JβF =


x 0 0 0

0 1 + 2x 0 0

0 0 2x 0

0 0 0 2 + x

 .

6. Final comments

It is shown that twistulant matrices over a ring can be thought as elements of a

finitely generated algebra, fact that is used to prove that the set of these matrices

is closed under the usual multiplication, and that if a twistulant matrix is invertible

its inverse is also twistulant. In the case where the ring is a field, particularly a

finite field, it is shown that the twistulant matrices can be diagonalized by means of

a Discrete Fourier Transform-type matrix. This fact is used to show that the group

of twistulant matrices over a finite field is commutative with the usual matrix mul-

tiplication though this is a direct consequence from Proposition 3.3 and Theorem

3.4.
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The manuscript is organized as follows: In Sect. 2 the necessary background mate-
rial is given. In Sect. 3 results on the ring Rk , k > 1 , are presented and in Sect. 4 
we give results about the set of ideals of the ring, particularly principal ideals. Sec-
tion 5 is devoted to results on cyclic codes of odd length over the mentioned ring, 
described by means of idempotent elements. In Sect. 6 examples are provided illus-
trating the main results of the manuscript, and the Conclusions are given in Sect. 7.

2 � Preliminaries

In this section definitions and basic results from commutative algebra used 
in the manuscript are recalled. We refer the reader to [10] and [11] for details. 
By a ring R we mean a commutative ring with identity ( 1 ∈ R) . Given a non-
empty subset S ⊆ R , the ideal generated by S will be denoted by ⟨S⟩ , i.e., 
⟨S⟩ = {

∑m

i=1
risi ∣ ri ∈ R, si ∈ S,m ∈ ℕ} . If S = {s1,… , sn} , it will be writ-

ten ⟨s1,… , sn⟩ for ⟨S⟩ . The annihilator of an R-module M is the ideal 
Ann(M) = {r ∈ R ∣ r ⋅M = 0}.

An R-module M is simple if and only if M ≅ R∕� , where � is a maximal ideal of 
R, i. e., M has no nonzero submodules. The length of M, �R(M) , is the number of links 
of the composition series for M or ∞ if M has no a finite composition series, where 
by a composition series we mean a chain M = M0 ⊃ M1 ⊃ … ⊃ Ml−1 ⊃ Ml = ⟨0⟩ 
such that each Mi∕Mi+1 is a nonzero simple module. When �R(M) < ∞ this number 
is unique by the Jordan–Hölder theorem (see [10], Proposition 6.7).

The ring R is called local if it has a unique maximal ideal � . If R is a local 
ring with maximal ideal � , the quotient ring R∕� is the residue field of R, which 
is a finite field �q where q = pm for some prime p and m a positive integer. This 
information is indicated by (R,�,R∕�) or (R,�, �q).

One of the algebraic structures to be considered in this work is the Frobenius 
ring. There are several (equivalent) definitions of a Frobenius ring (see [12, 13]), 
although for our purpose the following is enough: let (R,�,R∕�) be a finite local 
ring. Then R is Frobenius if and only if Soc(R) is a simple R-module. In particu-
lar dimR∕� Ann(�) = 1 where Ann(�) is the annihilator ideal of � . The group 
of units of R is denoted by U(R) . A ring R is called a chain ring if its collec-
tion of ideals is totally ordered by inclusion. Given a finite local ring (R,�, �q ), 
there is a natural homomorphism � ∶ R ⟶ �q given by �(r) = r = r +� , which 
extends naturally to � ∶ R[x] ⟶ �q[x] as: if f (x) = a0 + a1x +⋯ + anx

n ∈ R[x] 
then �(f )(x) = f = a0 + a1x +⋯ + anx

n , where �(ai) = ai . We say that a monic 
polynomial f (x) ∈ R[x] is basic irreducible if f (x) ∈ �q[x] is irreducible. Hensel’s 
lemma (see [11], Theorem XIII.4) guarantees that given a factorization as a prod-
uct of pairwise coprime polynomials over �q[x] it lifts to a factorization of basic 
irreducible coprime polynomials over R[x]. If I is an ideal of a ring R, the set 
I[x] = {r0 + r1x +⋯ + rnx

n ∈ R[x] ∣ ri ∈ I, 0 ≤ i ≤ n} is an ideal of R[x]. If I is an 
ideal of a ring R and R a subring of a ring S, the ideal IS is called the extension of 
I to S.
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3 � The ring Rk = ℤ
2k
+ uℤ

2k

Let Rk ∶= {a + ub ∣ a, b ∈ ℤ2k , k > 1, u2 = 0} where ℤ2k is the ring of integers 
modulo 2k . As usual we take the complete residual system {0, 1, 2,… , 2k − 1} as 
the respective set of class representatives for ℤ2k.

Some properties of the ring Rk are sumarized in the following,

Proposition 1  Let Rk = {a + ub ∣ a, b ∈ ℤ2k , k > 1, u2 = 0} . Then 

(i)	The ring Rk has cardinality 22k and it is isomorphic to ℤ2k [U]∕⟨U2⟩.
(ii)	The ring (Rk = ℤ2k + uℤ2k ,� = ⟨2, u⟩,Rk∕� ≅ 𝔽2) is a local non-chain Frobenius 

ring with nilpotency index of � equal to t = k + 1.
(iii)	The group of units of the ring is U(Rk) = {a + ub ∣ a ∈ U(ℤ2k )} with 

|U(Rk)| = �(22k) = 22k−1.
(iv)	The j-power of the maximal ideal � is �j = ⟨2j, 2j−1u⟩ and it has cardinality 

22(k−j)+1 for j = 1, 2, ..., k.
(v)	The ring Rk has length �

Rk
(Rk) = 2k.

Proof  It is easy to see that the ideal ⟨2, u⟩ generated by 2 and u is the unique maximal 
ideal of Rk . Observe that the ideals ⟨u⟩ and ⟨2j⟩ for 1 ≤ j ≤ k − 1 are not comparable 
by inclusion so Rk is not a chain ring. By observing that Ann(⟨2, u⟩) = ⟨2k−1u⟩ , the 
fact the ring is Frobenius follows from the definition. In order to prove (v), just note 
that

is a composition series for the ring Rk . The rest of the claims are obvious. 	�  ◻

4 � The set of ideals of Rk

Since the maximal ideal of Rk is generated by two elements, the other ideals of 
the ring are also generated by at most two elements. In the following lines results 
on the set Lk of ideals of the ring Rk are presented, in particular the number of 
principal ideals is determined.

4.1 � Principal ideals

We observe that if I = ⟨2d� + �u⟩ is a principal ideal of Rk with � ∈ U(ℤ2k ) , 
� ∈ ℤ2k , then I = ⟨2d + �u⟩ for some � ∈ {0, 1, 2,… , 2d − 1}.

Rk ⊃ � ⊃ ⟨2⟩ ⊃ ⋯ ⊃ ⟨2j−1⟩ ⊃ �j = ⟨2j, 2j−1u⟩ ⊃ ⟨2j⟩ ⊃ ⋯ ⊃ �k ⊃ �k+1 = ⟨0⟩
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Since Rk is finite and local, observe that two principal ideals are the same if 
and only if their generators are associated. Let Γ = U(Rk) be the group of units of 
Rk acting by translation on Rk (Table 1).

By the Frobenius–Burnside Lemma (see [14],  Theorem  3.22) we can state the 
following:

Theorem  2  Let � ∈ Γ , X� = {x ∈ Rk ∣ � ⋅ x = x} be the set of elements fixed by � 
under the considered action. Then the number N of principal ideals I of Rk , such 
that

is

Example 3  Let R3 = ℤ8 + uℤ8 . For each � ∈ U(R3) , using SageMath [15], it is seen 
that,

where X� = {x ∈ X ∣ � ⋅ x = x} . Thus 
∑

�∈Γ �X� � = 320 and by Theorem 2, there 
are:

principal ideals. Note that the trivial ideals ⟨0⟩ and ⟨1⟩ are included.

4.2 � Two‑element generated ideals

The cardinality of the ring Rk increases with the values of k, as are the number of 
ideals, both, those generated by one element and those generated by two elements. 
In the following, general results about the two-element generated ideals are given. 

I = ⟨2d + �u⟩, 0 ≤ d ≤ k, � ∈ ℤ2k or I = ⟨2du⟩,

N =
1

22k−1

∑

�∈Γ

|X� |.

1

25

∑

�∈Γ

|X� | = 320

32
= 10

Table 1   Number of fixed 
elements |X� | in the ring R

3
 by 

each unit �

� |X� | � |X� | � |X� | � |X� |

1 64 1 + 5u 8 3 + 6u 4 5 + 7u 8
3 4 1 + 6u 16 3 + 7u 4 7 + u 4
5 16 1 + 7u 8 5 + u 8 7 + 2u 4
7 4 3 + u 4 5 + 2u 16 7 + 3u 4
1 + u 8 3 + 2u 4 5 + 3u 8 7 + 4u 4
1 + 2u 16 3 + 3u 4 5 + 4u 16 7 + 5u 4
1 + 3u 8 3 + 4u 4 5 + 5u 8 7 + 6u 4
1 + 4u 32 3 + 5u 4 5 + 6u 16 7 + 7u 4
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Proposition 6  Let Id,e
�,�

 , d < e , be an ideal of the ring Rk . Then if there is an � ∈ ℤ2k 
such that � − 2e−d� = 2d� , Id,e

�,�
= ⟨2d + �u⟩.

Proposition 7  Let Id,e
�,�

 , d < e , be an ideal of the ring Rk . If � ∈ U(ℤ2k ) the ideal is 
generated by two elements and Id,e

�,�
= Id

0,1
.

As an example of the previous proposition we have the following

Example 8  Let Id
�,�

 be an ideal of Rk , k > 1 , as in Proposition 5. Given � = �� , 
� = 2l� , then

5 � Cyclic codes over Rk

In this section cyclic codes over the ring Rk = ℤ2k + uℤ2k are considered and 
described by means of idempotent elements. Results about constacyclic codes and 
their idempotents over finite chain rings are given in [16].

5.1 � Basic results

Let R be a finite commutative local ring with identity, maximal ideal � and resi-
due field �q = R∕� . The image of an element r ∈ R under the canonical mapping 
R ⟶ �q will be denoted by r . Let R[x] be the polynomial ring over R. Recall that 
an element f (x) ∈ R[x] is called basic irreducible if its image f (x) ∈ �q[x] is irreduc-
ible. The following result is easy to prove.

Lemma 9  Let R be as above. Then f (x), g(x) ∈ R[x] are relatively prime if and only 
if f (x) and g(x) are relatively prime in �q[x].

Let R be as above. An R-submodule C ⊂ Rn is called a linear code of length n. Let � 
be the standard cyclic shift operator on Rn : (r0, r1,… , rn−1)

�

→ (rn−1, r0, r1,… , rn−2). 
A linear code C of length n over R is cyclic if �(c) ∈ C whenever c ∈ C.

For a ring R the polynomial representation of Rn is the R-isomorphism given by 
P ∶ Rn

⟶ R[x]∕⟨xn − 1⟩ , P(a0, a1, ..., an−1) = a0 + a1x +⋯ + an−1x
n−1 . By means 

of the polynomial representation of Rn a cyclic code of length n can be regarded as 
an ideal of the polynomial ring Rn = R[x]∕⟨xn − 1⟩.

We have the following,

Proposition 10  The ring Rk,n = Rk[x]∕⟨xn − 1⟩ is not a principal ideal ring.

Id
�,�

= ⟨2d, �u⟩ = I
d,k

0,�
.
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Proof  The map � ∶ Rk,n ⟶ Rk given by 
∑n−1

i=0
aix

i
↦

∑n−1

i=0
ai is a surjective ring 

homomorphism. The ideal �−1(�) of Rk,n is not principal, otherwise if �−1(�) = ⟨r⟩ 
for some r ∈ Rn,k,

would be principal, a contradiction. 	�  ◻

Now consider the ring Rk = ℤ2k + uℤ2k which is local with maximal ideal 
� = ⟨2, u⟩ , and observe that by means of the inclusion map � , Rk can be consid-
ered as a subring of Rk[x] . If f is a basic irreducible polynomial of Rk[x] , there is 
the canonical mapping � ∶ Rk[x] ⟶ Rk,f = Rk[x]∕⟨f ⟩.

The next proposition will be useful for describing cyclic codes.

Proposition 11  Let f ∈ Rk[x] be a monic basic irreducible polynomial and 
Rk,f = Rk[x]∕⟨f ⟩ . Then any ideal I  of Rk,f  is of the form

where IRk,f  is the ideal extension of the ideal I of Rk to the ring Rk,f .

Proof  Given f and Rk,f  as above, since Rk is local then Rk,f  is an unramified exten-
sion ring over Rk , i.e., (Rk,f ,�,Rk,f∕�) is a local commutative ring, with maximal 
ideal � = �Rk,f  (see [11], XIV.8 for details). In particular any ideal I  of Rk,f  is 
such that I ⊆ � . Let g ∈ Rk[x] and consider g + ⟨f ⟩ ∈ Rk,f  . Since f is basic irre-
ducible, there are two possibilities, gcd(g, f ) = 1 or gcd(g, f ) = f  . If the first pos-
sibility holds, from Lemma 9, g and f are relatively prime in Rk[x] , i. e., there are 
�1, �2 ∈ Rk[x] such that �1g + �2f = 1 which implies �1g ≡ 1 mod ⟨f ⟩ , thus g is a 
unit and hence I = ⟨1 + ⟨f ⟩⟩.

If on the contrary, gcd(g, f ) = f  we can write in Rk[x] , g = fq + r , r ∈ �[x] but 
that means g + ⟨f ⟩ ∈ �Rk,f = � . Let I ⊂ � be an ideal such that g + ⟨f ⟩ ∈ I  and 
let I = �−1(I) which is an ideal of Rk[x] . Since in particular r ∈ 𝜋−1(g + ⟨f ⟩) ⊂ I 
then 𝜋(𝜋−1(g + ⟨f ⟩)) = 𝜋(r) ⊂ 𝜋(𝜋−1(I)) = 𝜋(I) = IRk,f  then I ⊆ IRk,f  . Let 
s + ⟨f ⟩ ∈ IRk,f = �(I) , we have 𝜋−1(s + ⟨f ⟩) ⊂ I = 𝜋−1(I) from which it follows 
that s + ⟨f ⟩ ∈ I  and hence IRk,f ⊆ I  . Thus I = IRk,f  	�  ◻

From the previous proposition it follows that the configuration of the set of 
ideals of the ring Rk,f  is the same as that of the ring Rk.

Let n be an odd integer, xn − 1 = f1f2 … fm where the fi ’s are distinct 
monic basic irreducible pairwise relatively prime polynomials in Rk[x] for 
i ∈ {1, 2,… ,m} , and let Rk,n = Rk[x]∕⟨xn − 1⟩ . The following result is a direct 
consequence of the Chinese Remainder Theorem (CRT).

Theorem 12  Let n and xn − 1 be as above. Then,

⟨�(r)⟩ = �(⟨r⟩) = �(�−1(�)) = � = ⟨2, u⟩,

I = IRk,f ,
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where Rk,fi
= Rk[x]∕⟨fi⟩ . In particular, any ideal I of Rk,n is such that

where Ii is an ideal of Rk.

Corollary 13  Let n be odd, Lk be the set of ideals of the ring Rk and m the number 
of distinct monic basic irreducible coprime factors of xn − 1 . Then the ring Rk,n has 
|Lk|m ideals.

We recall that the ring Rk is local with maximal ideal � = ⟨2, u⟩ and residue field 
�2 . If f ∈ Rk[x] its image under the reduction map to �2[x] is denoted by f  . The fol-
lowing result is easy to prove.

Proposition 14  Let xn − 1 = f1f2 … fm where n is odd and the fj ’s are distinct 
monic basic irreducible pairwise relatively prime polynomials in Rk[x] for 
j ∈ {1, 2,… ,m} . Let xn − 1 = Πm

i=1
fi be the corresponding product of irreducible 

factors in �2[x] . Then a non-zero principal ideal C = ⟨f + ⟨xn − 1⟩⟩ ⊂ Rk,n is trivial 
if and only if gcd(f , xn − 1) = 1 in �2[x].

5.2 � Idempotents and cyclic codes

In this section cyclic codes over the ring Rk are described by means of idempotent 
elements. First, general definitions and results are recalled.

Let R be a commutative ring with unity. An element e ∈ R is called idempotent 
if e2 = e . Two idempotent elements e and f are said to be orthogonal if ef = 0 . An 
idempotent e is called primitive if e = f + g with f and g orthogonal idempotent, 
then f = 0 or g = 0 . A set of idempotent elements {e1, e2,… , em} such that 

∑m

i=1
= 1 

is called a complete set. Furthermore if eiej = 0 , i ≠ j , the set is called a complete 
set of pairwise orthogonal idempotent elements. The set of idempotent elements of a 
ring R will be denoted by E(R).

We recall that a ring R is said to be decomposable if there exist a finite collection 
{R1,… ,Rt} of non-trivial rings such that R ≅ ⊕t

i=1
Ri.

Proposition 15  Let R be a commutative ring with identity. Then R is decomposable, 
R ≅ ⊕t

i=1
Ri , if and only if there is a complete set of non-trivial pairwise orthogonal 

idempotent elements {e1, e2,… , et} of R such that Ri ≅ eiR.

Proof  Suppose R is decomposable and let �i = (0,… , 1,… , 0) be the element of 
⊕t

i=1
Ri with 1 at the ith coordinate and zero elsewhere. Then {�1, ..., �t} is a complete 

Rk,n ≅

m⨁

i=1

Rk,fi
,

I ≅

m⨁

i=1

IiRk,fi
,



1 3

São Paulo Journal of Mathematical Sciences	

set of pairwise orthogonal idempotent elements of ⊕t
i=1

Ri . It follows that if � is an 
isomorphism between R and ⊕t

i=1
Ri , the elements {�−1(�i), i = 1, 2, ..., t} comprise 

the desired set of idempotent elements of R. The converse is obvious. 	�  ◻

The following result is easy to prove from the definitions.

Proposition 16  Let R be a commutative ring with identity. The following statements 
are equivalent: 

	 (i)	 R is local.
	 (ii)	 R has no non-trivial idempotent elements.
	 (iii)	 R is indecomposable.

In order to give a set of idempotent elements of the ring Rk,n = Rk[x]∕⟨xn − 1⟩ , 
an explicit isomorphism determining the Chinese Remainder Theorem is recalled 
(Theorem 12).

Let n be an odd integer, xn − 1 = f1 ⋯ fm a product of distinct monic basic irre-
ducible pairwise coprime polynomials in Rk[x] and define � ∶ Rk,n ⟶

⨁m

i=1
Rk,fi

 
by

where c ≡ ci mod ⟨fi⟩ for i = 1, 2, ...,m.
It is easy to see that � is an isomorphism whose inverse is given as follows. 

Let xn − 1 =
∏m

i=1
f i be the product of irreducible polynomials in �2[x] . Let 

̂
fi =

∏
i≠j fj , then gcd{ ̂fi, ...,

̂
fm} = 1 and from Lemma 9, f̂1, ..., ̂fm where f̂i = Πi≠jfj , 

are relatively prime. Then there exist �i ∈ Rk[x] such that

Observe that 
∑m

j=1
𝜆j f̂j ≡ 𝜆i f̂i ≡ 1 mod ⟨fi⟩, i = 1, 2, ...,m . The map 

� ∶
⨁m

i=1
Rk,fi

⟶ Rk,n . defined as

is the inverse of the map � defined above.

Proposition 17  With the notation as above let Rk = ℤ2k + uℤ2k , n a positive odd 
integer and xn − 1 = f1f2 … fm the decomposition of xn − 1 as a product of monic 
distinct basic irreducible pairwise coprime polynomials. Then

where êi = 𝜆i f̂i , f̂i =
xn−1

fi
 , and �i , i = 1, 2, ...,m as above is a complete set of primi-

tive orthogonal idempotent elements of Rk,n = Rk[x]∕⟨xn − 1⟩.

�(c + ⟨xn − 1⟩) = (c1 + ⟨f1⟩, ..., cm + ⟨fm⟩)

𝜆1 f̂1 + 𝜆2 f̂2 +⋯ + 𝜆m
̂fm = 1.

𝜙(c1 + ⟨f1⟩, c2 + ⟨f2⟩, ..., cm + ⟨fm⟩) =
m�

i=1

𝜆i f̂ici + ⟨xn − 1⟩,

Ek,n = {ê1, ê2,… , êm}
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Proof  Let êi = 𝜙(ei) where ei is the i-th coordinate vector of 
⨁m

i=1
Rk,fi

 and � is as 
defined above. From the definition of � it can be seen that êi = 𝜆if̂i . 	�  ◻

The following easy result will be used later.

Lemma 18  Let C = ⟨f ⟩ be a principal ideal of a commutative ring R with identity 
and let e be a nontrivial idempotent element in C . Then, 

(a)	 C = ⟨e⟩ if and only if f = ef  . Moreover, ec = c for all c ∈ C.
(b)	 The idempotent e such that ⟨f ⟩ = ⟨e⟩ is unique.

Now we have,

Theorem  19  Let n be an odd integer, Rk,n = Rk[x]∕⟨xn − 1⟩ and xn − 1 =
∏m

i=1
fi 

be the representation of xn − 1 as a product of distinct monic basic irreduc-
ible pairwise relatively prime polynomials in Rk[x] . Let C = ⟨f + ⟨xn − 1⟩⟩ 
be a non-trivial principal ideal of Rk,n and assume f = fj1 fj2 ⋯ fjs where 
jl ∈ M = {1, 2, ...,m}, l = 1, 2, ..., s . Then, the idempotent ef + ⟨xn − 1⟩ ∈ Rk,n such 
that

is given by

where i ∈ M⧵{j1, j2, ..., js} and {êi + ⟨xn − 1⟩} is the complete set of primitive pair-
wise orthogonal idempotent elements given in Proposition 17.

Proof  Since f =
∏s

l=1
fjl , let f̂ =

∏
i fi with i ∈ M⧵{j1, j2, ..., js} . Thus f and 

f̂  are relatively prime and there are 𝜆, 𝜆̂ ∈ Rk[x] such that 𝜆f + 𝜆̂f̂ = 1 . Let 
ef + ⟨xn − 1⟩ = �f + ⟨xn − 1⟩ ∈ Rk,n . It is easy to see that this is an idempotent ele-
ment. Observe that

and

By construction,

and from Lemma 18 it follows that ⟨f + ⟨xn − 1⟩⟩ = ⟨ef + ⟨xn − 1⟩⟩ . 	�  ◻

C = ⟨ef + ⟨xn − 1⟩⟩

ef + ⟨xn − 1⟩ =
�

i

êi + ⟨xn − 1⟩,

𝜆f ≡ 1 ≡ 𝜆̂i f̂i mod ⟨fi⟩, i ∈ M ⧵ {j1, j2, ..., js},

�f ≡ 0 mod ⟨fjl⟩, l = 1, 2, ..., s.

fef + ⟨xn − 1⟩ = f (𝜆f ) + ⟨xn − 1⟩ = f (1 − 𝜆̂f̂ ) + ⟨xn − 1⟩ = f + ⟨xn − 1⟩.
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Corollary 20  With the above notation, Rk,n = Rk[x]∕⟨xn − 1⟩ has 2m idempotent ele-
ments, where m is the number of basic irreducible factors of xn − 1 in Rk[x].

The general idea of the proof of the following result is easy or it can be found in 
([17], Theorems 4.3.2 and 4.3.8).

Proposition 21  Let n be an odd integer, Rn = �2[x]∕⟨xn − 1⟩ and let 
xn − 1 = g1g2 ⋯ gm be the expression of xn − 1 as a product of distinct monic irre-
ducible pairwise relatively prime polynomials in �2[x] , and let ĝi =

xn−1

gi
 . Then the 

set {�1, ..., �m} with 𝜃i = Λiĝi, i = 1, 2, ...,m , Λi such that Λiĝi ≡ 1 mod ⟨gi⟩ is a com-
plete set of primitive pairwise orthogonal idempotent elements in Rn.

The previous result together with the next one will provide a way to determine the 
set of primitive idempotent elements in the ring Rk,n.

Proposition 22  ([18], Proposition 4.1) Let R be a commutative ring and N a nilpo-
tent ideal of R with nilpotency index t ≥ 2 . Let s > 1 be the characteristic of the quo-
tient ring R/N. If e is an idempotent element of R/N then,

is an idempotent element of the ring R. Moreover, if there is a collection of primitive 
orthogonal idempotent elements of R/N it lifts to a set of idempotent elements of R 
with the same property. Also, |E(R)| = |E(R∕N)| where E(R) is the set of idempotent 
elements of R.

Now we apply the previous results to our situation. Recall that 
Rk,n = Rk[x]∕⟨xn − 1⟩ , �k,n = �Rk,n is an ideal with nilpotency index t = k + 1 , 
where � is the maximal ideal of Rk and Rk,n∕�k,n = �2[x]∕⟨xn − 1⟩ has characteristic 
s = 2.

Theorem 23  With the notation as in Proposition 21,

is the complete set of primitive pairwise orthogonal idempotent elements of the ring 
Rk,n.

From Theorems 19 and 23 we have the following,

Theorem 24  Let C = ⟨f + ⟨xn − 1⟩, ug + ⟨xn − 1⟩⟩ be a two-element generated ideal 
of Rk,n . Then

where ef + ⟨xn − 1⟩ and eg + ⟨xn − 1⟩⟩ are the idempotent elements associated to 
f + ⟨xn − 1⟩ and g + ⟨xn − 1⟩ respectively, in the sense of Theorem 19.

es
t−1

E(Rk,n) = {(�1)
2k , (�2)

2k , ..., (�m)
2k}

C = ⟨ef + ⟨xn − 1⟩, ueg + ⟨xn − 1⟩⟩,
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6 � Examples

In this section examples illustrating the previous results are provided in which the 
calculations were carried out with SageMath ([15]).

Example 25  The following illustrates Theorem  19. Let R3 = ℤ8 + uℤ8 and 
x15 − 1 = f1f2f3f4f5 where

in R3[x] . The idempotent generator for the ideal 
C = ⟨x6 + 5x5 + 3x4 + 5x3 + 2x2 + 4x + 1⟩ = ⟨f2f3⟩ will be determined. Observe that 
under the reduction map, x15 − 1 = g1g2g3g4g5 where

A complete set of idempotent elements in R15 = �2[x]∕⟨x15 − 1⟩ is 
E(R15) = {�1, �2, �3, �4, �5} where,

Since the ring R15 has characteristic s = 2 , and the maximal ideal � of R3 has nilpo-
tency index t = 4 , from this complete set of pairwise primitive idempotent elements 
and Theorem 23, a complete set of idempotent elements of R3,15 = R3[x]∕⟨x15 − 1⟩ 
can be given: E3,15 = {e1, e2, e3, e4, e5} with ei = (�i)

8 , i = 1, 2,..., 5. Specifically,

Since f = f2f3 , with the notation as in Theorem 19, it follows that ef = ê1 + ê4 + ê5 , 
i. e.,

Note that f = fef  , therefore ⟨f ⟩ = ⟨ef ⟩.

f1 = x + 7, f2 = x2 + x + 1, f3 = x4 + 4x3 + 6x2 + 3x + 1

f4 = x4 + 3x3 + 6x2 + 4x + 1, f5 = x4 + x3 + x2 + x + 1

g1 = x + 1, g2 = x2 + x + 1, g3 = x4 + x + 1

g4 = x4 + x3 + 1, g5 = x4 + x3 + x2 + x + 1.

�1 =x
14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1,

�2 =x
14 + x13 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x,

�3 =x
12 + x9 + x8 + x6 + x4 + x3 + x2 + x,

�4 =x
14 + x13 + x12 + x11 + x9 + x7 + x6 + x3,

�5 =x
14 + x13 + x12 + x11 + x9 + x8 + x7 + x6 + x4 + x3 + x2 + x.

e1 =7(x
14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1),

e2 =x
14 + x13 + 6x12 + x11 + x10 + 6x9 + x8 + x7 + 6x6 + x5 + x4 + 6x3 + x2 + x + 6,

e3 =4x
14 + 4x13 + x12 + 4x11 + 2x10 + x9 + 3x8 + 4x7 + x6 + 2x5 + 3x4 + x3 + 3x2 + 3x + 4,

e4 =3x
14 + 3x13 + x12 + 3x11 + 2x10 + x9 + 4x8 + 3x7 + x6 + 2x5 + 4x4 + x3 + 4x2 + 4x + 4,

e5 =x
14 + x13 + x12 + x11 + 4x10 + x9 + x8 + x7 + x6 + 4x5 + x4 + x3 + x2 + x + 4.

ef = 3x14 + 3x13 + x12 + 3x11 + 5x10 + x9 + 4x8 + 3x7 + x6 + 5x5 + 4x4 + x3 + 4x2 + 4x + 7.
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The following example illustrates Theorem 24.

Example 26  Let k = 2, n = 7 , R2 = ℤ4 + uℤ4 and R2,7 = R2[x]∕⟨x7 − 1⟩ . 
In R2[x] we have x7 − 1 = f1f2f3 where f1 = x + 3 , f2 = x3 + 2x2 + x + 3 , 
f3 = x3 + 3x2 + 2x + 3 . Thus, in �2[x] , x7 − 1 = f 1f 2f 3 with f 1 = x + 1 , 
f 2 = x3 + x + 1 , f 3 = x3 + x2 + 1 . Then, E = {�1, �2, �3} where

Since the nilpotency index of the maximal ideal of R2 is t = 3 and the 
characteristic of the ring �2[x]∕⟨x7 − 1⟩ is s = 2 , from Theorem  23, 
E2,7 = {e1, e2, e3} = {(�1)

4, (�2)
4, (�3)

4} where

With the previous information, the idempotent generators of the 
ideal C = ⟨1 + 2x + x2 + 3x3, u(x − 1)⟩ = ⟨f , ug⟩ of the ring R2,7 
are determined. Observe that f = 3f3 , g = f1 and from Theo-
rems 19 and 24, ef3 = e1 + e2 = x6 + x5 + 2x4 + x3 + 2x2 + 2x , and 
eg = x6 + x5 + x4 + x3 + x2 + x + 2 . Thus,

7 � Conclusions

This manuscript approaches the study of the finite non-chain Frobenius ring 
Rk = ℤ2k + uℤ2k , with u2 = 0 and k > 1 an integer and the number of principal ide-
als is given. Partial results on the ideals generated by two elements are provided. 
Cyclic codes over this ring are also considered, and it is shown that these codes can 
be described by means of idempotent elements. Examples are included illustrating the 
main results of the paper.
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Dr. José Noé Gutiérrez Herrera 
Depto. de Matemáticas, UAM-I



El Comité Organizador otorga la presente

C O N S T A N C I A
A: Horacio Tapia-Recillas

por haber impartido la conferencia

Códigos DNA y el campo de Galois F16

en el 15o Coloquio Nacional de Códigos, Criptografía y Áreas Relacionadas, celebrado del 25 al 27 de
junio de 2025, de forma remota desde CDMX, MÉXICO

Dra. Gina Gallegos Garćıa Dr. José Noé Gutiérrez Herrera
Por el Comité Organizador Por el Comité Organizador

CIC-IPN UAM-Iztapalapa




