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Abstract

Given a finite commutative local ring with identity, residue field
F,, p > 2 a prime, and a length n such that gcd(p,n) = 1, linear
constacyclic codes over such rings are studied by means of idempotent
elements. Under such conditions, the present work involves both: chain
and non-chain rings.

Mathematics Subject Classification: 94B05, 94B60, 16U40

Keywords: Finite ring, constacyclic codes, idempotent elements

1 Introduction

Linear codes, cyclic and constacyclic codes over finite rings have been studied
intensively in recent years. In particular, finite chain rings have been used as
alphabets for this type of codes ([10], [3]). Constacylic codes are a generaliza-
tion of cyclic codes and have been studied in contemporary papers by several
research groups, for instance, over a finite chain ring we have the work [2],
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and some cases where the alphabet is a finite non-chain Frobenius ring were
studied in [1].

In the present work we study the structure of constacyclic codes and their
description by means of idempotent elements when the alphabet is a finite
commutative local ring R with identity and residual field F,. The manuscript
is organized as follows: In section 2 the necessary background material is given.
In section 3 results on constacyclic codes are presented with emphasis on their
description by means of idempotents elements. Finally, in section 4 examples
illustrating the main results are presented.

2 Preliminaries

In this section definitions and basic results from algebra used in the manuscript
are recalled. We refer the reader to [7] and [8] for details. By a ring R we
mean a finite commutative ring with identity (1 € R). The set of units in R is
denoted by U(R). An ideal I of R is generated by a nonempty S C R, denoted
by I =(S),if I ={>" rs;|ri€R,siecSmeN} IfS={s,...,s} we
write I = (s1,...,s). If I is an ideal of a ring R and R is a subring of a ring
S, the ideal IS, generated by the elements of [ in S, is called the extension of
the ideal I to S.

The ring R is called local if it has only one maximal ideal m. If R is a
local ring with maximal ideal m the quotient ring R/m is the residue field of
R, which is a finite field F,, where ¢ = p™ for some prime p. This information
will be indicated by (R, m,F,). Given a finite local ring (R, m,F,), there is
an integer ¢t > 1 such that m* = (0) and m*~! # (0). Such integer ¢ is called
the nilpotency index of m. The (Jacobson) radical of R, Rad(R), is defined
as the intersection of all the maximal ideals of R and it is characterized in the
following way: Let R be a ring. An element r € R satisfies r € Rad(R) if and
only if 1 — rs is a unit in R for all s € R.

Let R be a finite local ring with residue field F,, with ¢ = p™ for some
prime number p, and consider the corresponding rings of polynomials on one
variable R[z] and Fy[z]. The map ~ : R — F, is defined by 7 = r +m. This
map ~ can be extended to a reduction map R[z] — F,[z] by f(z) — f(z)
where f(z) =@y +ax+...+a,_12" L If f(x) € R[z] we will write f instead
f(z) as it is customary nowadays. Two polynomials f, g € R[z| are relatively
prime (or coprime) if (f)+(g) = (1). Also, f is regular if it is not a zero-divisor
in R[z] which is equivalent with f # 0, and f € R[] is basic irreducible if f is
irreducible in F,[z]. If I is an ideal of a finite commutative ring with identity
R, then the set I[z| ={ro+maz+...+rpa” € R[z] |r; € [,0<i<n}isan
ideal of R[z]. From the definitions, the following lemma is easy to prove.
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Lemma 2.1. Let f,g € R[z|, where (R, m,F;) is a finite commutative local
ring with identity. Then f,g are relatively prime in Rlx] if and only if f and
g are relatively prime in F,[x].

As mentioned, R will denote a finite commutative ring with identity un-
less othereise specified. From Hensel’s lemma (theorem XIII.4) and theorems
XIIL.7. and XIIL.11 in the reference [8] it is not difficult to see the following,

Proposition 2.2. Let f € R[z] be a monic reqular polynomial, where
(R,m,F,) is a finite commutative local ring with identity. Suppose in Fy|x],
f= [T, 9; with the §; monic, irreducible and pairwise relatively prime poly-
nomials. Then, f has a factorization as a product of monic, basic irreducible

and pairwise coprime polynomials.

General definitions and results about idempotent elements in a ring are
recalled. Let R be a commutative ring with unity. An element e € R is called
idempotent if €2 = e. Two idempotent elements e and f are said to be orthog-
onal if ef = 0. An idempotent e is called primitive if e = f + g with f and
g orthogonal idempotent, then f =0 or g = 0. A set of idempotent elements
{e1,e2,... ey} such that Y " e; = 1is called a complete set. Furthermore, if
eie; =0, 7 # j, the set is called a complete set of pairwise orthogonal idempo-
tent elements. Additionally, if all the idempotents in such a set are primitive,
the set is the complete set of primitive pairwise orthogonal idempotent ele-
ments and it is unique ([6] proposition 22.1). The set of idempotent elements
of a ring R will be denoted by E(R).

We recall the notion of a lifting idempotent. If I is an ideal of R, let
0 € E(R/I). It is said that 6 is lifted to R if there is an e € F(R) such that
7(e) = 0, where 7 is the natural map R — R/I. In this case we say e € E(R)
is a lifting idempotent.

A ring R is decomposable if there are Ry, Rs, ..., R; commutative non-
trivial subrings of R with identity such that R = @!_,R,.

Let (R,m,F,) be a finite commutative local ring with identity. In par-
ticular, R is noetherian and artinian. Given a basic irreducible polynomial
f € Rlz], let Ry = Rlz]/(f). With the notation and definitions introduced
above we establish the following,

Lemma 2.3. Let f € R[z] be a monic basic irreducible polynomial and let
Ry = Rlz]/(f). Then, for g € Rlz], g+ (f) € URy) if and only if g is
relatively prime with f in R[z].

Proof. Suppose f, g are relatively prime in R[z]. Then by definition (g)+(f) =
(1) implies there are hg,h; € R such that hog + h1f = 1. Thus, in Ry we
have hog + (f) = 1+ (f), that is, g + (f) € U(Ry). Conversely, suppose
g+ (f) € U(Ry). Let h + (f) € Ry such that gh + (f) = 1 + (f). Then
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hg + fFy = 1+ fF; for some Fy, Fi € R[z]. Rearranging the terms we
have hg + fF = 1, with F € Ry and then g and f are relatively prime by
definition. n

Corollary 2.4. Let Ry be as in lemma 2.3. If f,h € Rlx] are not relatively
prime in Rx], then (14 h) + (f) € U(Ry).

Proof. If h € m[z] C R[z] there is nothing to prove: (1+ h) + (f) € U(Ry)
since 1 + (f) is a unit and h + (f) is nilpotent. Let us suppose h ¢ m[z].

By hypothesis h and f are not relatively prime in F,[z] which, given f is
irreducible, means that h = hgf for some hg € F,[z]. Thus,

1+h—hof =1+hof —hof =1€TF,[z].

By lemma 2.1, 1 + h and f are relatively prime in R[z]. The claim follows
from lemma 2.3. O

Proposition 2.5. Let f € R[z]| be a monic basic irreducible polynomial.
Then Ry is a local ring.

Proof. Tt will be shown that the set of non-units 91 of Ry is an ideal. To
prove the assertion we only need to show the set is closed under addition. Let
g+ (f),h+ (f) be non-units. By lemma 2.3 g and h are not relatively prime
with f in R[z]. Suppose without loss of generality that (g+h)+ (f) = 1+ (f).
From this g+ (f) = (1—h)+{f), leading to an absurd. On one hand g+ (f) is a
non-unit and on the other hand (1—h)+(f) = (1) in R[z], because 1 — h and f
are relatively prime in F,[z]. However that means (1—h)+(f) € U(Ry). Then
the non-units of Ry form the ideal 91 and, therefore, Ry is a local ring. O

Lemma 2.3 and proposition 2.5 imply the following claim. The proof is in
essence the same as Proposition 11 of [12] and it is omitted.

Proposition 2.6. Let f € Ry[x] be a monic basic irreducible polynomial
and Ry = Rz]/(f). Then any ideal Z of Ry has the form

1 =1IRy,
where I'Ry denotes the ideal extension of the ideal I of R to the ring Ry.
Let R = R[z|/(F), where F € R|x].

Theorem 2.7. Let (R,m,F,) be a finite local commutative ring with iden-
tity. Let F € R[z] be such that deg F = n, ged(p,n) = 1, and F = [[I2, f
where the f; are monic basic pairwise relatively prime polynomials in R[x].
Then,

%= Rlzl/(F) = DR,



Constacyclic codes over a finite commutative local ring with residue field IF), 61

where Ry, = R[z|/(fi) fori=1,...,m. Furthermore, there is a complete set
of primitive pairwise orthogonal idempotents

E,={é,...,én}

in R[z]/(F) such that Ry, = &R fori = 1,....,m, i.e, R = P"| Ry, =
D", &R

Proof. As a direct consequence of the Chinese Remainder theorem we have

R = R[a]/(F) = DRy

Let ; = (0,...,1,...,0) be the element of @;", Ry, with 1 at the ith co-
ordinate and all the remains equal to zero. It is immediate to see that e;
is idempotent, ¢ = 1,...,m and the set {ej,..., e/} is a complete set of
pairwise orthogonal idempotents. We claim each e; is primitive. Suppose
h; = (hit, .y him), 8 = (91, - - 9im) € E(@.~, Ry,) are orthogonal idempo-
tents such that
e;=h; +g,

then (haga ..., himGim) = (0,...,0) from which h;g;; = 0, j = 1,...,m.
Note h;;,9;; € Ry, are idempotents in a local ring, then h; = 0 or g; = 0,
where 0 is the zero of 692:1 Ry,. The existence of a complete set of primitive
pairwise orthogonal idempotents {é1, és, ..., ¢} C R follows from the fact that
é = 9" (e;) where ¢ : R — @._, Ry, is the Chinese Remainder Theorem
isomorphism. Notice (é;R,+, ) is a finite commutative ring with identity é;.
The isomorphism ¢! restricted to each summand of @, Ry, induces a ring
isomorphism ¢; in the obvious way between Ry, and the ring &R = (¢;). O

3 Constacyclic Codes over a local ring with
residual field F,

In this section, given a prime p, we consider linear constacyclic codes of length
n, ged(p,n) = 1, defined over a local ring (R, m,F,). An R-submodule C C
R™ will be a linear code C over R. A codeword will be denoted as ¢ =
(coyC1yevyCno1), ¢; € R. Let v € U(R) be unit of R. A linear code C of
length n over R is constacyclic if it satisfied

(co,c1,- -+, Cp1) implies (ycp_1, ¢, 1, .., Cn2) €C.

By means of the polynomial representation associated to the elements of R"
and, in particular, with the elements of the code C ([5], [4]) a linear constacyclic
code of length n, with ged(p,n) = 1, is identified with an ideal from the ring

Rn = Rlz]/(z" =),y € U(R).



62 H. Tapia-Recillas and J. A. Velazco-Velazco

Particular cases of linear constacyclic codes are called cyclic and negacyclic
codes with v = 1, —1 respectively.

From theorem 2.7, we have the following situation illustrated in the dia-
gram,

Rlz]/ T" —7) —= @, le/ (fi)
Fplz]/(z" =) — @i, Fplal/ ()

Via the isomorphisms given by the Chinese Remainder theorem and the cor-
responding reduction maps, an explicit isomorphism ¢ : @, &R, — R, is
obtained. The map ¢ : @~ é€R, — R,, defined by

¢<é101+ <$n_7>>"'aémcm -1' _'7 Zezcz 1‘ _7>> (1)

where the ¢; € E,, the corresponding complete set of primitive pairwise
orthogonal idempotents from R,,.
That the map ¢ is an isomorphism, follows from the next theorem.

Theorem 3.1. Let n be an integer such that ged(p,n) = 1, 2" —~ =[[", f;
where the f;’s are distinct monic basic irreducible pairwise relatively prime
polynomials in Rz] for i € {1,2,...,m}, and (R,m,F,) a local ring. The
complete set of primitive pairwise orthogonal idempotents in R,

Ep = {él,éQ,...,ém}

is given explicitly by & = \ifi + (™ —~), fori =1,...,m, where \; € Rla]

satisfy
i=1

Moreover, each one of the primitive é; is a lifting idempotent from the ring
Fpz]/ (2™ = 7).

Proof. Let ™ —~ = HZ | Fi be the product of irreducible polynomials in F ol
with F} = f, and let F; = [, Fj- Then ged(Fy, Fy, ..., F,) = 1 and from
Lemma 2.1, the correspondmg fl, ce fm where fZ =1] i/, are relatively
prime. Then there exist \; € R[z], ¢ = 1,...,m such that

MA+Nfo+ oo+ Anfm = 1.

Also, for i = 1,...,m, from lemma 2.1 and theorem 2.7, there is a \; € R[]
such that A; f;+\; fi = 1 in R|x] which implies é; = A; f;+ (2™ —~) is idempotent
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in R,,. This defined é;¢; = 0+ (z™ — ) for i # j and by construction they are
primitive. The idempotent é; € R,, by definition is a lifting idempotent as a
consequence of the reduction map R/(z™ — ) — (R/(z" —~))/m. O

The previous theorem together with the next one will provide a way to
determine the set of primitive idempotent elements in the ring R, from the

ring Ffa] /(@ = 7).

Proposition 3.2. (/9/, Proposition 4.1) Let R be a commutative ring and
N a nilpotent ideal of R with nilpotency index t > 2. Let s > 1 be the
characteristic of the quotient ring R/N. If e is an idempotent element of

R/N then,

t—1
S
€

1s an tdempotent element of the ring R, called the lift of e. Moreover, if there is
a collection of primitive orthogonal idempotent elements of R/N it lifts to a set
of idempotent elements of R with the same property. Also, |E(R)| = |E(R/N)]
where E(R) is the set of idempotent elements of R.

Now we apply the previous results to our situation. Recall that (R, m,F,)
is a local ring, then R,, = R[z]/(z" —7), m,, = mR,, is an ideal with nilpotency
index ¢, where m is the maximal ideal of R and R, /m, = F,[z]/(z™ — ) has
characteristic s = p. With the previous notation the following claim follows
easily.

Theorem 3.3. Let £ = {él,ég,...ém} be the complete set of primitive
pairwise idempotent elements in the ring Fylz]/(z™ —~). Then

At A t—1 A t—1
g gt s pp 5
E,={&6=07 ,éo=05 ... é,=0" }

1s the complete set of primitive pairwise orthogonal idempotent elements of the
ring R.

With notation as above, the following result is easy to prove.

Theorem 3.4. Let n be an integer such that ged(p,n) = 1, and z™ — v =
[I" fi be a product of monic basic irreducible pairwise coprime polynomials.

1. The ring R, is a principal ideal ring if and only if R is a principal ideal
Ting.

2. The ring R, is a semi-local ring. Moreover, R, has exactly m mazximal
ideals.

3. Let L be the set of ideals of the ring R (including (1)) and m the number
of distinct monic basic irreducible coprime factors of ™ — 7 in Rz].
Then the ring R, has |L|™ ideals.



64 H. Tapia-Recillas and J. A. Velazco-Velazco

Proof. With the notation as above, for j = 1,..., m consider the ideal
M= 1+ (). 0MRy, &... &1+ (fa) C PRy,

This is a maximal ideal as, from propositions 2.5 and 2.6,

(@sz> /m‘] = ]deegfj.
=1

Therefore, from theorem 2.7 the ideal 901, has the same number of generators
under the isomorphism image ¢(9M1;). The second claim is a consequence of
this fact. The third part follows from the Chine Remainder theorem. O]

We recall that the ring R is local with maximal ideal m and residue field F,,.
If f € Rlz] its image under the reduction map modulo m to F,[z] is denoted
by f. We have the following.

Proposition 3.5. Let y be a unit of the ring R, ™ —~ = [[1~, fi where n
is such that ged(p,n) = 1 and f;’s are distinct monic basic irreducible pairwise
relatively prime polynomials in R[x] fori € {1,2,...,m}. Letaz™ —~ =", f,
be the corresponding product of irreducible factors in F,[z]. Then a non-zero
principal ideal C = (f +(z" —~)) C R, is trivial if and only if ged(f, 7 —7) =
L in F,[z].

Proof. 1f gcd(f, 2™ — ) = 1, then ged(f, fi) = 1 and from the lemma 2.1 we
have (f) + (f;) = (1) in R[z]. Then, lemma 2.3 and theorem 2.7 imply

(f+ @" =) 2 e (1 + (i) EBRL

Now we are able to give the following,

Theorem 3.6. Let n be an integer such that ged(p,n) = 1, R, = R[z|/{x"—
v) and let ™ —~ =[], fi be the representation of x™ — v as a product of
distinct monic basic irreducible pairwise relatively prime polynomials in R[z].
Let C = (f + («™ — 7)) be a non-trivial principal ideal of R, and assume
f=fifpn-f, where jy € M ={1,2,...,m},l =1,2,...;s. Then, the idem-
potent element ey + (2" — ) € E(R,,) such that

C=(ef+(z" =)
s given by

ef+ (2" —7) Zel (™ — ),

where {é; + (x™ — ) | i € M\ {jl,jz,...,js}} C E, and the set E, is the
complete set of primitive pairwise orthogonal idempotent elements of R,,.
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Proof. Since f = [[;_, f;, let f= IL fi with i € M\ {1, jo, ..., js}. Thus f
and f are relatively prime and there are \, \ € R[z] such that A\f + Moo= 1.
Let ef + (" — ) = Af + (2" — ) € R,. It is easy to see that this is an
idempotent element. Observe that

Alezﬂlfz mod <fi>7i€M\{j17j2a"'7js}v
and
Af=0 mod (f;),l=1,2,....s
Using the isomorphism (1) from )", Ry, — R, the expression for e+ (z"—~)
is obtained. Also, by construction,
fes+{a" =) = fOAf) + (@ = 7) = f(L = Af) + (2" =) = [+ (&" = 7).
It follows that (f + (2" — 7)) = (ef + (2" — 7)). O

4 Examples of constacyclic codes over local
rings and their idempotents

SageMath ([13]) was utilized to develop the computations in the following
examples.

Example 4.1. Let R = Fo+ulFy = {a+bu | a,b € Fy,u? =0} = {0, 1,u, 1+
u}. This is a finite commutative local chain ring with identity, whose mazimal
ideal is m = (u) with nilpotency index t = 2, and residue field R/m =Fy. Let
n=15,v=1 and p =2, i.e, we describe the cyclic codes of length n = 15. In
R[z] the polynomial ' — 1 =[[_, f; where fi=a + 1, fo=a>+a+ 1, f3 =
o+l fa=at 23+ fs=at + a3+ 22+ 2+ 1. From theorem 2.7 we

have . .
R15 = R[.Z']/<.CL'15 — 1> = @sz = @éiRw,
=1 =1

where €; € Fy, the complete set of primitive pairwise orthogonal idempotents
of Ris, set which we will proceed to determine. Let Ri5 = Folz]/(x1® +1). We

have £ —1 = 2541 and 25 +1 = []_, fi € Falx]. By means of the Euclidean
algorithm, the complete set of primitive pairwise orthogonal idempotents in Rqs

is given by {92,1 =1,2,3,4,5}, where

5
00 = J[#+ @

i1
o = a4+ 42042 T 42 ot v o+ (210 + 1),
05 = 22+ 42" +a5+a' 420 + ¥ + o+ (2 + 1),
0 = a"+a2B 4242 +2% 427 +25+ 2% 4+ (277 + 1),

95 — I14+JI13+$12+$11+l‘9+$8+$7+$6+$4+$3+I2+$+<$15+1>.
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with él R B i S i S T B L Ry R R A N A S N LR
z+ 1+ (25 +1). Then, by theorem 3.3, Ey = {62,i = 1,2,3,4,5} C Rys.
From proposition 2.6 each Ry, = Rlz|/{f:), i = 1,...,5 has the same set of
ideals £ = {(0), (1), (u), (1 +u)} as R. By means of the isomorphism (1) the
generator for a non trivial cyclic code C in Rq5 is given by

C= (Z gi€i + (2% = 1))

where g; € {0,1,u, 1+ u}, this last set the collection of ideal generators in the
ring R. Notice, by theorem 3./, each cyclic code C in Rqs is principal since
R =Ty + ulFy is a principal ideal ring.

Example 4.2. From the ring in example 4.1, i.e. R = Fy + ulFy where
u? = 0, take v = 1 +u. We will determine the complete set of primitive
pairwise orthogonal idempotent elements for the ring

Ris = Rlz]/(z"® — (1 +u)).

In this case we have the factorization x> — (1 +u) = [[o_, hi as a product
of monic basic irreducible pairwise coprime polynomials in R[x], where hy =
r+(14u), hy = 22+ (1+u)z+1, hy = 24+ (1+u)z+1, by = 2+ (1+u)2® +1
and hs = 2* + (1 +u)z® + 22 + (1 +w)x + 1. In the ring Rys = Folz]/(z'® +1)
we have the complete set of primitive pairwise orthogonal idempotent elements
{él,é2,§3,54,é5} (see previous example 4.1) from where by means of theorem
3.8 the corresponding complete set of primitive pairwise orthogonal idempotent
elements in Rqs5 1s given by

=2+ (1 4+uwzB +22+ Q4+ w)zt + 20+ Q4+ u)2® + 28+ 1+ u)z” +25 4+ (1 4+u)a® +22 4+ (14
w)zd + 22 + (1 +u)z + 1.

o=z + (1+wzB+ 1 +wa + 20 + 28 + (1 +w)z” + (1 +w)x® + 24 + 22 + (1 +u)z.

és3=a2 4+ (1+uwr® +28 + 28 + 22 + (1 +w)ad + 22 + (1 +w)e.

g =2+ (1+wzB + 22+ (1 +w)z' + (1 +w)a® + (1 +wa” + 28 + (1 +u)ad.

s =2+ (1 +weB +22 4+ 14wz + (1 +uw)a® + 28+ (1 +u)a” + 28 + 2t 4+ (1 4+ w)2d + 22 + (1 +u)x.
Notice we have omitted the part +{x'®> — (1+w))’ on each idempotent for sake
of space and notation clarity. It is worth mentioning the idempotent elements
obtained in this work and those obtained from proposition 3.1 appearing in [11]
where the authors prove Rlz]/{z" — 1) =2 R[z]/(z' — (1 + u)) in case n is an
odd integer. The isomorphism p : R|z]/(z" —1) — Rlx]/{z'® — (1 +u)) given
in such work and defined by p(c(z)) = c((1+u)x) maps each é; € Rlz]/(x"—1)
to é; € Rlx|/{(z¥ — (1 + u)).

Example 4.3. Let p=5,7 =8 and n = 6 and consider the non-chain ring
R = Zos + uZsys = {a+bu | a,b € Zys,u*> = 0}. R is a finite commutative
local ring with identity and mazimal ideal m = (5,u) whose nilpotency index
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1st = 3. The ring operations are the natural ones derived from the sum and
product in Zas. With these parameters, the ring Re = R[x]/(2® —8). In R]x],
28 — 8 = fifofs where fi = x® +23, fo = 2% 4+ 120 + 23, f3 = 2% + 13z + 23.
The residue field is R/m = F5. Under the reduction map, in Fslz],

oS =at 2=,

where f, = 2?2 +3, fo = 2> + 20+ 3, fy = 22 +3x + 3. Then let Rg =
Fs[z]/{x% + 2). The complete set of primitive pairwise orthogonal idempotent
elements in R is {f) = 32* + 22 + 2+ (20 +2),00 = 2® + 2 + 222 + o + 2 +
(26 4 2),05 = 42° + 2% + 222 + 4z + 2+ (25 4+ 2)}. From theorem 3.3 we have

E5 = {éb é2> é3} = {éf57 é§57 é§5}

where é; = 02°, i =1,2,3, and

~

0% = 23z* + 212% + 17 + (2% - 8),
05 = 62° + 2"+ 2% + 2+ 17 + (2° - 8),
03> = 192° + 2 + 227 + 242 + 17 + (2° - 8).

With the previous information, using theorem 3.6, the idempotents associated

to the ideal of Rg
C = (z*+20* +4+ (2% —8), u(z?+23) + (2% —8)) = (f + (2° —8), ug+ (2° —8))

are determined. Observe that f = fafs, g = fi in Rlx]. Thene; = é; = 23z*+
21224+ 17+ (2% —38), and similarly, e, = és+¢é3 = 2zt +42* +9+4 (2% —8). Thus,
since e, e, € C, ep(f+(x®—8)) = f+(2®—8), e,(ug+ (2°—8)) = ug+ («®—38),
then

C=(f+ (2 = 8),ug + (2° — 8)) = ey, uey).
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Abstract

Let R be a commutative ring with a collection of ideals {N, N, ..., N,_, } satisfying
certain conditions, properties of the set of invertible quadratic residues of the ring R
are described in terms of properties of the set of invertible quadratic residues of the
quotient ring R/N,

Keywords Lifting method - Units - Quadratic residues

1 Introduction

Quadratic residues [1] have been studied since the 17th and 18th century by P. de
Fermat, L. Euler, J.L. Lagrange A.M. Legendre, among other mathematicians. Now-
adays quadratic residues are still a topic of study ([2]),[3-6]) and they have applica-
tions in areas which include acoustical engineering ([7]), cryptography ([8, 9]), in
the study of Paley (conference) graphs, primality testing (Solovay-Strassen, Miller-
Rabin), and integer factorization (quadratic sieve, number field sieve).

In this note, by considering R a commutative ring with a collection of ideals
{N{.N,,...,N,_,} satisfying the CNC-condition given in Definition 1, properties of
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invertible quadratic residues in R are described in terms of properties of invertible
quadratic residues in the quotient ring R/N,, i.e., the properties are “lifted” from
those of a quotient ring. Recently, this class of rings has been studied in ([10-12]) to
obtain properties of idempotent elements, invertible elements and a generalization of
the Euler-Fermat Theorem using lifting method. In essence, the proof of the results
discussed in those works are based on the existence of a multiplicative function H
from R/N; to R that preservers the essencial characteristics of the elements in the
quotient ring R/N,, for more details see Proposition 5. In this manuscript, the ideas
in the works cited above are adapted to the study of invertible quadratic residues.

Examples of rings that satisfy the CNC-conditions include the integer modules
k. Z ., where p is a prime number and k is a positive integer, finite chain rings, the
ring group RG with Galois ring R and commutative group G and the polynomial
ring R[x] where R is a commutative ring containing a collection of ideals satisfying
the CNC-condition.

The manuscript is divided in four sections. In Sect. 2 notation and facts needed in
the rest of the manuscript are presented. In section 3 the main results are given and
in Sect. 4 applications of the results previously discussed are considered. Examples
are given to illustrate the main results.

2 Notations and basic facts

Given R an associative ring with identity and N a nil ideal of R, we begin our discus-
sion recalling that units of the quotient ring R/N can be lifted to the ring R. More
precisely, if R* and (R/N)* denote the group of units of the ring R and R/N respec-
tively, the following result holds.

Proposition 1 Let R be an associative ring with identity, N a nil ideal of R and
~: R —> R/N the canonical homomorphism from R to the quotient ring RIN. Then,

1. f=f+Ne€®R/N) ifandonlyif f+ N C R*
If R is finite the cardinality of R* and the cardinality of (R/N)* are related by the
relation

| R* |=I N || (R/N)" | . €))

Proof The proof of this proposition can be found in [11], Proposition 2.1 and
Remark 2.2. O

Recall that an element a of a ring R is a quadratic residue, if there exists x € R
such that x2 = a ([1, 13, 14]). Given N an ideal of R, it is clear that if ¢ is a quad-
ratic residue in the ring R, then a + N is a quadratic residue in the quotient ring R/N.
The following proposition provides sufficient conditions to prove the converse of

@ Springer
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this statement, as it will be seen, proposition 1 will be essential in the proof that will
be presented.

Proposition 2 Let R be a commutative ring with identity and N a nil ideal of R. If
(g+N)> =a+ N and2g + N is an invertible element in RIN, then the function

n:g+N—a+N givenby n(g+m)=(g+m)?

is bijective. In other words, if a + N is a quadratic residue in RIN, then every ele-
ment b € a+ N is a quadratic residue in the ring R and, and for all b € a + N the
quadratic equation

¥=b

has a unique solution in the set g + N C R.

Proof Since (g + N)> = a + N, it is clear that the function # is well defined. Since N
is a nil ideal of R and 2g + N is an invertible element in R/N it follows from Proposi-
tion 1 that for all p € N, the element 2g + p is an invertible element in R. Thus, if
n(g +m;) = n(g + m,) then,

(2g + ml + mz)(ml - mz) . 0.

Since 2g +m; + m, is an invertible element in the ring R, it is concluded that
m; = m,. Therefore # is an injective function. Now, we show that # is surjective. First
of all, note that since (g + N)> = a + N, there exists n, € N, such that g = a + n,,.
Now, given n € N, it is easy to see that

n(g+2g) '(n—ny) =a+n,

which proves the claim. O

Now, definitions and notation that will be useful in the rest of the manuscript are
introduced. The set g(R*) will denote the quadratic residues in the ring R that are
also units in R, that is

qg(R*) = {a € R;a is a quadratic residue in Randa € R*}.

For a a quadratic residue in the ring R, s(a) will denote the set of solutions of the
equation x*> = a in the ring R. In other words,

s(a) = {x € Rx* = a}.

Finally, if N is an ideal in ring R and a € R, T(a + N) will be denote the set of solu-
tions of the equation x> = b, when b varies in the equivalence class a + N € R/N, in
other words

T(a+N)={y€eRy €a+N}.
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Based on propositions 1 and 2, sufficient conditions to lift quadratic residues
from the quotient ring R/N in ring R, where N is a nil ideal of the ring R are
established. In addition if R is finite, formulas relating the cardinality of the sets
N, s(b),s(b + N),R*,(R/N)*, q(R*) and g((R/N)*) are given.

Proposition 3 Let R be a commutative ring with identity and N a nil ideal of R such
that 2 + N is an invertible element in RIN. The following statements hold,

DN =

a+ N € g((R/N)*)ifand only ifa + N C q(R*).
The cardinality of the set q(R*) satisfies

| g(R*) |=| N || g(R/N)*) | . 2)

Ifa+ N € q((R/N)*), then for allb € a + N the number of solutions of the quad-
ratic equation

¥=b
in the ring R is equal to the number of solutions of the quadratic equation
y2 =b+N
in the ring R/N. In other words
| s(b) |=| s(a +N) |

forallb € a+ N.
The cardinality of the set R* satisfies the following relation

IR=INT Y Is@+N)]. 3)

a+Neg((R/N)*)

If in addition, there exists a such that| s(a + N) |= a foralla+ N € q((R/N)*),

R/N)*
@ 1a(@®/Ny = ]
N || (R/N)*
b) | q(R*) |: M (4)
R*
o 1q®) 1= E.
a

Proof 1. It is easy to see that if a + N C g(R*), then a+ N € q((R/N)*). Now
we proved the other implication. Assuming a+ N € g((R/N)*), there exists
g+ N € R/N such that (g + N)> =a+ N. Since a + N and 2 + N are invertible ele-
ments in the ring R/N, it follows that

Q+N)(g+N)=2g+N
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is an invertible element in R/N, thus proposition 2 implies that every element
b € a + N is a quadratic residue in the ring R. In addition, since a + N € (R/N)* and
N is a nil ideal of the ring R, proposition 1 implies that for all b € a + N, b € R*.
This proofs that a + N C g(R*).

2. From claim 1, it follows that

q®Ry= | @+
a+Neq((R/N)*)

)
Then,

lqRY 1= Y, la+NI=INI Y 1=INIlg(®R/N)MI,

a+Neqg((R/N)*) a+Neg((R/N)*)

which proves relation (2).

3. Note that since a + N € g((R/N)*), for all b € a+ N, s(b) # @. In order to
prove that | s(b) |=| s(a + N) |, it will be shown that the canonical homomorphism
¢ : R —> R/N restricted to the set s(b), namely

x€sh) > px)=x+N

determines a bijection between s(b) and s(b+ N). In fact, if x € s(b) then
x+ N € s(b + N), thus the function ¢ is well defined. Now, if ¢p(x) = p(y) =x+ N
with x,y € s(b), then (x + N)> = b+ N = a + N with 2x + N an invertible element
in the ring R/N. So, proposition 2 implies that the function

zEx+N—>111(z)=zzeb+N

is bijective, hence, since x,y € x + N and 2= y2 = b, the injectivity of the func-
tion 7, implies that x = y. Now, ift + N € s(b + N), then t + N)> =b+N =a+ N.
Since 2t + N is an invertible element in the ring R/N, proposition 2 implies that the
function

z€t+N > @) =2€b+N

is bijective. Thus there exists n, € N, such that n,(t + ny) = (t + ny)* = b. Hence,
t+ny € s(b) and ¢(t + ny) =t + N, hence ¢ is a surjective function.

4. Note that the set R* is a disjoint union of the sets T(a+ N) with
a+ N € g((R/N)*), that is

R* = U T(a + N).

a+Neq((R/N)*)
From this fact, it follows that
R= > IT@+M]. ©)
a+Neq((R/N)*)

In order to compute | T(a + N) |, observe that T(a + N) can be written as a disjoint
union of the sets s(b) withb € a + N,
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T(a+N) = U s(b). @

bea+N

Thus, since forallb € a+ N, | s(b) |=| s(a + N) |,

| T@+N) = Y, [s®) [=ls@+N)| Y, 1=ls@+NIINI. (g
b€a+N bea+N
Finally, combining (6) and (8), relation in (3) follows easily.
5. Since |s(a + N)| = a for all a+ N € g((R/N)*), from relation (3), it follows
that

| R* |= a | N || g(R/N)") |, )
and proposition (1) implies that,
| R* |=I N || (R/N)" | . (10)

Thus, by combining (9) and (10), relation in (5)-a) is obtained. The relation in (5)-b)
is obtained from (2) and (5)-a). Finally, relation in (5)-c) is obtained from (10) and
(5)-b). O

In the next lines the results in proposition 3 are illustrated with an example.
Let p be a prime number different from 2, k a natural number and let R = Zpk be
the ring of integers modulo p*. It is clear that the ideal N = (p), is a nilpotent
ideal of index k of the ring R. In addition,

R Zy

Ny S

thus| (R/N)* |= p — 1 and from Lagrange’s theorem it follows that | N |= p*~!. From
the identity in (1), we have that | R* |= p*~!(p — 1). In addition, since, R/N = Z,, is
a field of characteristic different from 2, it follows that the number a appearing in
claim 5 of proposition 3 is @ = 2. From proposition 4, we conclude that:

o Ifae Z[*,k, and a = b mod (p), then a is a quadratic residue in Zpk if and only

if b is a quadratic residue in the ring Z,,.
o Ifae q(Z;k) and a = b mod (p), then the number of solutions of the equation

x*> = ain the ring Z . is equal to the number of solutions of the equation *=b

in the field Zp, which is equal to 2, in other words
s(a) = s(b) = 2.

e The cardinality of the sets q(Z;), q(Z;k) are given by

-1
2 2

* _p—l * —
19(Z) |= —— and | g(Z}) |=

p

respectively.
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Next, the previous proposition is extended to a direct product of a finite collection of
rings.

Proposition 4 Let R|,R,, ..., R,,, be commutative rings with identity and let N; be a
nil ideal of the ring R;, such that 2 + N; € (R;/N,)* for eachi = 1,2, ... ,m. The fol-
lowing statements hold:

1. (ay,...,a,) € q((R; X -+ XR,)) if and only if a; + N; € g(R/N,)*) for every
i=1,2,....m.
2. If(ay,...,a,) € g((R; X -+ XR,)*) then

| say,....a,) |=[ s(a, + Np) | - [ s(a,, + N,) | . (11)
3. The cardinality of g((R; X -+ X R,,)") satisfies the following relation
L q((Ry X - X R,)") |=I Ny | q(R/ND®) | -+ [ N,y Il g(R/N,D T (12)
4. If| s(a+ N,) |= a;foralla+ N; € g(R/N,)*), then

N R/N)*| - |N, R/N )*
o xRy o VRN L N RN,

Ay == 0y,

and

. | (R, X -+ X R,)* |
| g((Ry X -+ XR,)") |= . (14)
alaZ X am

Proof The proof of this proposition is a simple consequence of the results above, so
details are left to the reader. O

In the following lines the results of the previous proposition are illustrated with
. . K .
an example. Given n an odd natural number, if n = p'p;’ --- p,;’ denotes the prime
factorization of n. The Chinese Remainder Theorem implies that

2,27 1y X+ X j.
12 Pm

By setting R; = Z,,%z and N; = (p;) fori = 1,2, ... ,m, it is clear that R; /N, = Z, and
that 2 + N; € (R;/N,)*. Thus, from proposition 4, it is concluded that:

e IfaeZ,anda=aqa; mod (p) fori=1,2,...,m, ais a quadratic residue in Z,
if and only if g; is a quadratic residue in the ring Z,, foralli = 1,2, ..., m.
o Ifae€q(Z;)anda=5h; mod (pf") fori=1,2,...,m, since s(b; + N;) = 2 for all

i=1,2,...,m, the number of solutions of the equation x?

equal to 2", in other words

= a in the ring Z,, is
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s(a) = 2™,

e The cardinality of the set g(Z}) is given by

pk,—l
| g(Z) |= =

ko —
Q=D pu Pn=1
2m ’

3 Main results

In this section we present our main results. For R a commutative ring containing
a collection of ideals {N,,N,,...,N,_,;} satisfying a certain condition (the CNC
condition, Definition 1), properties of the set of invertible quadratic residues of
the ring R are described in terms of properties of the set of invertible quadratic
residues of the quotient ring R/N;.

Proposition 5 Let R be a commutative ring and N a nilpotent ideal of index t > 2 in
R. Then the following statements hold.:

1. For any prime number p such that p > t, foralln € N and a € R,
(a+ny =d’ +pnr,
for some » € R.

2. In addition, assuming there exists a natural number s > 1such that sN = {0} and
such that all the prime factors of s are greater than or equal to the nilpotency
index t of the ideal N. The function H : R/N — R given by

Hx+N)=x'
is well defined and it is multiplicative, i.e., it satisfies H((x + N)(y + N))
=Hx+N)H(y+N), forall x,y € R.

3. Under the assumptions of claim 1, if a + N is a quadratic residue in the quotient
ring RIN, then H(a + N) = &’ is a quadratic residue in R. More precisely, ifg € R
is such that (g + N)> = a + N, then

(gS)2 — as_

Proof

1. Sincen' =0,
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P t—1
_ P\ p—i — gp P\ iy
a+ny = . )a? R =a” + . ).
aer=3(5) (%)
J= J=
Since p is a prime number, p divides <I;> for all 1 <j < p— 1. Also, since

1<p,
(@+ny =a +pn(k,a" + ka0 + - +k_ @ "*'n'2)
where k; = (’l’ )/p. Therefore,
(a+nf =a" +pnr,

withr = kj@ ! + kya?2n+ - + k,_ @+ 'n'2 € R.

2. Letpy,p,,p;3-.- P, be the prime numbers, not necessarily different, appearing in
the prime factor decomposition of the integer s, with p; > ¢, fori =1,2,3, .-+, m.
Since y + N = x + N, there exists n € N such that y = x + n. Since p; > ¢, from
claim 1,

ypl =(x+}’l)pl =xp] +p]nr1,

for some r; € R. Similarly, since p, > t and p,nr; € N, it follows from claim 1
and the previous relation that

WP = (P + pynr)P? = X212 4 py(pynryr,,
for some r, € R. In the same way, it is possible to verify that
VP2 P = PP P (D Dy e p, YA(E Ty 0 T,
withr,,r,, ..., 1, € R. In other words,
¥ =x"+sh,

where h = nrr, ---r,, € N. Finally, since h € N and sN = 0, it follows that
y* = x*. Hence, the function H is well defined and it is easily verified that it is
multiplicative.
3. Since (g+ N)? = a+ N, it follows that (H(g + N))* = H(a + N), thus (g*)* = &',
i.e., @’ is a quadratic residue in the ring R.

O

An example illustrating the previous proposition is presented which it

allows to discuss additional properties of the function H. Consider R = Z,5 and

N = (5) ={0,5,10,15,20}. It is clear that N has nilpotency index ¢ = 2, sN = 0 for
s = 5and
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Z
=2~ 7

(5)

e By setting x + N =X, it is not difficult to see that H0) =0, H(1) = 1, H2) = 7,
H(§) = 18 and H(Z) = 24. Since, 6, 1 and 4 are the quadratic residues in the ring
Z,5/(5), then 0, 1 and 24 are quadratic residues in the ring Z,s.

e Since 3+ N)>=4+N in Z,5/(5). From proposition 2, it follows that the
function 7 : {3,8,13,18,23} — {4,9, 14,19,24} given by 5(x) = x> mod (25)
is a bijective function, in particular, all the elements in the equivalence class
4 + N are quadratic residues in the ring Z,5. Thus, the only quadratic residue
in the equivalence class 4 + N that is mapping by the function H is 24.

e Since H1+N+1+N)=7 and Hl1+N)+ H(1+N)=1+1 =2, then the
function H is not in general a ring homomorphism.

It is to be noticed that the hypothesis in claim 1 of Proposition 5, which requires
that all prime factors of s be greater or equal than the nilpotency index ¢ of the
ideal N, restricts enormously the number of applications of that proposition. For
instance, if we consider R = Z,, with 2 < r and N = (2), it is clear that N’ = {0}
and sN = {0} for s = 2", Thus, according to claim 1 of Proposition 5, in order
to get quadratic residues in the ring R by computing the quadratic residues in the
ring R/N = Z,, it is necessary that t < 2, therefore r = 2. Hence, we can only
obtain quadratic residues in the ring Z,, which is easily done by hand. In the fol-
lowing lines, we show how to overcome such restrictions.

Definition 1 [10, Definition 3.2] We say that a collection {N, ..., N, } of ideals of a
ring R satisfies the CNC-condition if the following properties hold:

1. Chain condition: {0} =N, CN,_; C---CN,CN, CR.
Nilpotency condition: for i =1,2,3, ...,k — 1, there exists #; > 2 such that
Ni C Ny

3. Characteristic condition: fori =1,2,3, ...,k — 1, there exists s; > 1 such that
5;N; C N;,,. In addition, the prime factors of s; are greater than or equal to ¢,.

The minimum number ¢, satisfying the nilpotency condition will be called the nil-
potency index of the ideal N, in the ideal N, ;. Similarly, the minimum number s;
satisfying the characteristic condition will be called the characteristic of the ideal
N; in the ideal N, ;.

The nilpotency condition and the characteristic condition of the previous defi-
nition can be stated as follows:

a. The nilpotency condition is equivalent to the following condition: for

i=12,...,k—1, N;/N,,, is a nilpotent ideal of index ¢, in the ring R/N,, , (for
details see [10, Definition 3.2]).
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b. The characteristic condition is equivalent to the following condition: for
i=1,2,...,k—1, there exists a natural number s; > 1 such that s;(N;/N;,;) =0
in the ring R/N,, ,, (for details see [10, Definition 3.2]).

Theorem 6 Let R be a commutative ring, {N,,N,, ... ,N,} a collection of ideals of
R satisfying the CNC-condition and let s; be the characteristic of the ideal N, in the
ideal N, . If a + N, is a quadratic residue in R/N,, then a’*>"**-1 is a quadratic resi-
due in R. More precisely, if g € R is such that (g + N,)*> = a + N, then

(g“lsz'"sk—l)2 = g%, (15)

Proof Note first that since the ideals N; satisfy the chain condition given in defini-
tion 1, foralli = 1,2, ...,k — 1, the following isomorphism holds

(R/Niy1)

R/N; = ——H1° (16)

(Ni/Niyy)
In addition, since the ideals N; satisfy the nilpotency condition and characteristic
condition with characteristics s; respectivelly, from claim 1 of proposition 5, it fol-
lows that fori = 1,2, ...,k — 1, the functions

H; : R/N; - R/N,,,, Hx+N)=x"+N,,
are well defined and multiplicative. Hence, if (g + N,)*> = a + N,
Hy_jo -+ oH (g + N,)*) = H,_ 0 - oH,(a + N)),

whence the identity in (15) is obtained. O

Remark 1 It follows from the proof of the Theorem (6) that, if @ € R is such that
a + N, is a quadratic residue in R/N|, then H,(a + N,) = a” + N, is a quadratic resi-
due in R/N,. In the same way, H,(a" + N,) = a2 4+ N; is a quadratic residue in
R/N;, and so on. At the end of this process, it is obtained that a*1%2%-1 is a quadratic
residue in R. The following chain of multiplicative functions,

R Hl R HZ Hk—Z R Hk—] R

— — — — =R, with H(x+N,)=x"+N;
Nl — NZ_) —) Nk—l — Nk l(x l) * e

appears naturally in that process.
Theorem 7 Let R be a commutative ring with identity, {N,,N,,...,N,} a collec-

tion of ideals of R satisfying both the Chain condition and the Nilpotency condition.
Assuming that2 + N, € (R/N,)*, the following claims hold

1. a+ N, €q((R/N)")ifand only ifa + N, C g(R*).
2. The cardinality of the set q(R*) is given by
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| gR") |=I Ny || g((R/Ny)") | (17)
3. Ifa+ N, € q(R/N\)"), then
s(a)=s(a+ N,_)) =+ =s(a+N,). (18)

4. Ifforeachi=1,2,3,...,k— 1, there exists a; such that,| s(a + N,) |= a; for all
a+ N; € g(R/N,)*), then

| (R/Ni+1)* |= «; | Q((R/Nm)*) . (19)
In particular,

| R* |= aqy | g(RY) | . (20)

Proof 1. It is easy to see that if a + N, C g(R*), then a + N, € g((R/N,)*). Now,
we proceed to prove the other implication of the statement. From the isomorphism
given in (16), the fact that N;/N,,, is a nilpotent ideal of index ¢; in the ring R/N,,,
and the fact that 2 + N, € (R/N,)*, from proposition (1), it follows that

(2+Niy)) +N;/Niyy € (R/Niy )/ N/ N )

foralli € 1,2,3,...,k. Now, let b € a+ N,, since b+ N, = a+ N, € g(R/N,)*), it
follows from the isomorphism

(R/N,)

N, /Ny)

R/N, =
that (b + N,) + N, /N, € q((R/N,)/(N,/N,))*), thus, from claim 1 of proposition 3,
it follows that
(b+N,)+ N, /N, ={b+n+N,y;neN,} Cq((R/N,)"),

in particular, it is concluded that b+ N, € g((R/N,)*). Similarly, from the
isomorphism

RN
RIN: & Ny

it follows that (b + N;)+ N,/N; € g((R/N3)/(N,/N5))*), thus, from item 1 of
proposition 3, it follows that

in particular, we concluded that b + N; € g((R/N5)*). Continuing this process, it
is finally shown that b+ N, = {b} € g((R/N,)*), which immediately implies that
b € q(R*). This shows that a + N; C g(R"), as we wanted to prove.

2. From the isomorphism given in (16) and item 2 of proposition 3, it follows that

@ Springer



Sao Paulo Journal of Mathematical Sciences

[ Ni/Nigy Il g(R/ND™) =1 qUR/ N )/ (Ni/Nig D)) 1= gUR /N ) |, 21
thus from Lagrange’s theorem,

N
| g(R") I=] g(R/NY) | = || g‘lll | 4(R/N)) |
k

N I N | N
[N TN TN |

[ q((R/ND) |,

whence the identity in (17) is obtained.
3. Again, from the isomorphism given in (16), it follows that

sa+N;)=s(a+ N +N;/N,,)

for all i=1,2,3,...,k—1 On the other hand, since N;/N,, is
a nilpotent ideal of index ¢ in the ring R/N;, and the fact that
2+ Ny +N;/Niyy € (R/N;y1)/(N;/N;;1))*, from claim 3 of proposition 3, it fol-
lows that

s@a+ Ny +N;/N;, ) =s(a+ Ny)).

for i=1,2,3,...,k—1. From the previous identities, it follows that
s(a+N;) =s(a+N,)fori=1,2,3,...,k— 1, this of course implies the equalities
appearing in (18).

4. It follows from the isomorphism given in (16) and claim 4 of proposition 3 that

| R/NGD 1=IN/Niy | ), Ista+ Ny |-
a+N;€q((R/N;)*)
Since, | s(a + N,) |= «;, it is deduced from the former identity that
| (R/Nip)™ 1= a; | Ni/Nigy Il g((R/ND™) |

Finally, identity in (19) follows from (21). O

4 Applications of the main results

In this section Theorems 6 and 7 will be used in order to describe properties of
the set of invertible quadratic residues for several classes of rings which include:
rings containing a nilpotent ideal; group rings RG where R is a commutative ring
containing a collection of ideals satisfying the CNC-condition and G is a com-
mutative group; polynomial ring R[x] where R is a commutative ring containing a
collection of ideals satisfying the CNC-condition. Examples are given illustrating
the results.
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4.1 Rings containing a nilpotent ideal

If R is a commutative ring containing a nilpotent ideal N, by invoking Theorems
6 and 7, properties of the set of invertible quadratic residues of the ring R are
described.

Proposition 8 Let R be a commutative ring and N a nilpotent ideal of nilpotency
index k > 2 in R. Then, the following statements hold,

1. Let s > 1 be the characteristic of the quotient ring R/IN. If a + N is a quadratic

residue in RIN, then a* " is a quadratic residue in R. More precisely, if g € R is
such that (g + N)> = a+ N, then

(gSH )2 — 22)

2. Assuming that2 + N € (R/N)*, the following claims hold,

a). a+ N € q(R/N)*)ifand only ifa+ N C q(R*).
b). The cardinality of the set q(R*) is given by

| g(R") |=| N || g(R/N)") | (23)
). Ifa+ N € q(R/N)*), then
s(a) = s(a+ N = -+« = s(a + N). (24)
d). If there exists B such that,|s(a + N)| = p foralla+ N € qg(R/N)*), then
| R/N™H* = B 1 g(R/NFH) | (25)
In particular,

|R* =8 149®R")|. (26)

Proof First it is shown that the collection B = {N, N2, ..., N*} of ideals of the ring R
satisfies the CNC-condition with nilpotency index and characteristic of the ideal N*
in the ideal N't! beingt;, =2ands; =sforalli=1,2,3,...,k— 1. Thus,

1. Itis clear that the collection B satisfies the chain condition.

2. Since (N2 =N?% and i+ 1<?2i for all i=1,2,3,...,k—1, it follows that
(N")? c N**! Hence, the collection B satisfies the nilpotency condition.

3. Since the ring R/N has characteristic s, there exists n € N such that )’ _, 1, = n.
Since

SN' = (1g + - + 1x)N' = nN' ¢ N'*!, (27)
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it follows that sN' ¢ N**!for alli = 1,2,3, ...,k — 1. In addition, all prime fac-

tors of s; = s are greater or equal to the nilpotency index ¢; = 2, proving that the

collection B satisfies the characteristic condition.
Therefore, the proof of this proposition is now a clear consequence of Theorems
6 and 7 O
Example 1 Let p be an odd prime number, i € N and let g = {a + bua,b € Z,,,u? = 0}- It
is readily seen that R with the (obvious) addition and multiplication operations is a
commutative ring with cardinality |R| = p%. It is also easily seen that R is isomor-
phic to the ring of polynomials with coefficients in Z,; modulo the ideal generated

by x?, that is Z,,[x]/(x). It is readely seen that
R* ={a+bua € (Z,), b€ Z,},

so the cardinality of R* is | R* |= @(p))p’ = (p — 1)p*~!, where @ denotes the Euler
totient function. On the other hand, it is verified that the ideal N = (p, u) has nilpo-
tency index k = i + 1 and that | N |= p*~!, then it follows that N is a maximal ideal
of R with

IR

z,,

Z|=

whence | (R/N)* |= p — 1 and the characteristic of the quotient ring R/N is s = p.
From the latter isomorphism and proposition 8, it is concluded that

o a+bu € g(R*)if and only ifa mod (p) € q(Z;).
e Leta+bueRifa mod (p) € q(Z;) then for allb € Z,;
(a+buy =@ mod (p))

is an invertible quadratic residue in R.
e The number of invertible quadratic residues of the ring R is given by

2i-1¢p _
| g(R*) |=I N || g(R/N)") |= l#

e leta+bueR,ifa mod (p) € q(Z;) then for all b € Zp, the number of solu-

2

tions in R of the equation x” = a + bu is equal to 2, in other words

s(a + bu) = 2.

An easy application of the previous result is the following:

Corollary 9 Let R be a commutative ring and c a nilpotent element of index k > 2 in
R. Then, the following statements hold:
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1. Lets > 1be the characteristic of the quotient ring R/{c). Ifa + {c) is a quadratic
residue in R/{c), then a*""is a quadratic residue in R. More precisely, if g € R is
such that (g + {(c))> = a + {c), then

(gsH )2 =a . (28)

2. Assuming that 2 + {c) € (R/{c))*, the following claims hold.:

a. a+{c) € q((R/{c))*)ifand only ifa+ {c) C g(R*).
b. The cardinality of the set q(R*) is given by

[ gR*) |=] {c) Il g(R/{e)™) | - (29)
c. Ifa+{c)e€ q((R/{c))*), then
s(a) = s(a + (ck_l)) = - =s(a+{c)). 30)

d. Ifthere exists p such that| s(a + {(c)) |= pforalla+{c) € q(R/{c))*), then

| R/ |= B 1R/ |- (31)
In particular,
|R* |= B | qR") |. (32)

Proof Since R is a commutative ring, (c) is a nilpotent ideal of nilpotency index & in
R, and the result follows immediately from Proposition 8 O

4.2 Group rings

If R is a commutative ring containing a collection of ideals satisfying the CNC-con-
dition and G is a commutative group, by invoking Theorems 6 and 7, properties of
the set of invertible quadratic residues of the group ring RG are described.

Proposition 10 Let R be a commutative ring and G a commutative group. Let
{N|,N,,...,N,} be a collection of ideals of R satisfying the CNC-condition. Then,
the following statements hold:

1. Lets; be the characteristic of the ideal N, in the ideal N;,,. If a + NG is a quad-
ratic residue in (R/N,)G, then a’*>"*1 is a quadratic residue in RG. More pre-
cisely, if ¢ € RG is such that (g + N;G)* = a + N, G, then

(gs,sz---sk_l)z = @*152 Sk (33)

2. Assuming that2 + N,G € (R/N,)G)*, then the following claims hold:
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a. a+N,G e q((R/N)G)*)ifand only ifa+ N,G C g((RG)").
b. The cardinality of the set q((RG)*) is given by

| g(RG)*) |=| Ny [ g(R/NDG)") | . (34)
c. Ifa+N,G € q((R/N,)G)*) then,

s(a) =s(a+N,_,G) = - =s(a+ N,G). (35)
d. [If there exists p such that|s(a + N,G)| = B for alla+ N,G € q((R/N,)G)*)

then,

| (R/N)GY |= B 1 a((R/N,)GY |, (36)

fori=1,2,-,k — 1. In particular,

[ (RG)" |= B | q((RG)") | . (37)

Proof In [11] (Proposition 4.9), it is shown that the collection
B = {NlG,NzG, e ’NkG}

of ideals of the ring RG satisfies the CNC-condition with nilpotency index and
characteristic of the ideal N;G in the ideal N;, ;G being exactly the same nilpotency
index and characteristic of the ideal N, in the ideal N, ;. Therefore, the proof of this
proposition is a direct conequence of Theorems 6 and 7. O

Corollary 11 Let G be a commutative group, R be a commutative ring and N a nilpo-
tent ideal of index k in R. Then, the following statements hold:

1. Lets > 1be the characteristic of the quotient ring RIN. If a + NG is a quadratic
residue in (RIN)G, then ¢ is a quadratic residue in RG. More precisely, if
g € RG is such that (g + NG)?> = a + NG, then

(g‘fk_] )2 =a"". (38)

2. Assuming that 2 + NG € ((R/N)G)*, the following claims hold

a. a+ NG € q((R/N)G)*) if and only if a + NG C qg((RG)*).
b. The cardinality of the set q((RG)*) is given by

| g(RG)*) |=| N ['“!] g((R/N)G)™) | . (39)
c. Ifa+ NG € q((R/N)G)"), then

s(@) = s(a+ N*'G) = -+ = s(a + NG). (40)
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d. If there exists f such that | s(a + NG) |= p for all a + NG € g((R/N)G)™)
then,

| (R/N*HG)* |= B | q((R/NFHG)*) |, 41)
fori=1,2,-,k — 1. In particular,

[ (RG)" |= B | q((RG)) | . (42)

Proof The proof of this corollary is a direct consequence of Proposition 10 and the
fact that the collection {N, N2, ..., N} of ideals of the ring R satisfies the CNC-con-
dition with constant characteristic s; = sforalli =1,2,3, -,k — 1. O

Example 2 Let p be an odd prime number, i €N and let R = {q+ bua,
be Zpi,u2 =1} be the group ring Z,G where G = {1,u} is the cyclic group of
order n = 2. It is readily seen that R with the (obvious) addition and multiplication
operations is a commutative ring with cardinality | R |= p*. It is also easily seen that
R is isomorphic to the ring of polynomials with coefficients in Z,; modulo the ideal
generated by x> — 1in R, that is Z2,G=Z,lx]l/ (x? — 1). It is readily seen that

(ZPG)* ={a+bu:a+#b,a# b},

so the cardinality of (Z,G)" is | (Z,G)* |= (p — 1)2. In addition, since N = (p) has
nilpotency index k = i in Z,;, and

2,6 o
(PG~

then it is deduced that | (Z,G)* |=| (Z,G)* || (p)G |= (p — 1)*p*~V. From the lat-
ter isomorphism and the proposition 11, it is concluded that:

e a+bueq(Z,6G)")if and only if (@ mod (p)) + (b mod (p))u € q((Z,G)).
e Leta+bu€ Z,G,if(a mod (p))+ (b mod (p)u € q((Z,G)*), then

(a+buy” =(@(a mod (p))+ (b mod pP)u)"

is an invertible quadratic residue in R = Z,,G.
e The number of invertible quadratic residues of the ring R is given by

| 9(Z,,6)") |=I N '] q((2,G)*) |= p*" | q((Z,G)") |

e Let a+buez,G, if (a mod(p))+ (b mod (p)hu € q(Z,G)*) and
| s((a mod (p)) + (b mod (p))u) |= p, then

| s(a + bu) |= p.
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If additionally, | s((a mod (p)) + (b mod (p))u) |=p for all
(@ mod (p)) + (b mod (p))u € q((Z,G)") then,

| (Z,6)" 1= B 1q((Z,;G)) |

For instance, if p = 3, it is easy to see that g((Z;G)*) = {1} and the number of solu-
tions in Z;G of the equation x> = 1 is equal to 4, in other words |s(1)| = 4. Thus, if
a+bue ZyGissuchthata=1 mod (3)and b =0 mod (3), then

(a+buy =1,

| s(a+bu) |=4,| q(Z5G)*) |= 3*"Dand | (Z3,G)* |= (4)3%D,

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no Conflict of
interest.

References

1. TIreland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in
Mathematics, vol. 84. Springer, New York (1990)

2. Chowla, S., Friedlander, J.: Class number and quadratic residues. Glasgow Math. J. 17(1), 47-52
(1976)

3. Lev, V.F, Sonn, J.: Quadratic residues and difference sets. Q. J. Math. 68(1), 79-95 (2017)

4. Burgess, D.A.: A note on the distribution of quadratic residues and non-residues. J. London Math.
Soc. 38, 253-256 (1963)

5. Petrov, F., Sun, Z.: Proof of some conjectures involving quadratic residues. Electron. Res. Arc.
28(2), 589-597 (2020)

6. Sarkozy, A.: On additive decompositions of the set of quadratic residues modulo p. Acta Arith. 155,
41-51 (2012)

7. Schroeder, M.R.: The distribution of quadratic residues and non-residues in the Goldwasser-Micali
type of cryptosystem. J. Acoust. Soc. Am. 65(4), 958-963 (1979)

8. Jusutus, B.: The distribution of quadratic residues and non-residues in the Goldwasser-Micali type
of cryptosystem. J. Math. Cryptol. 29(2), 115-137 (2015)

9. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi, S. (ed.)
Advances in Cryptology - CRYPTO 2009, pp. 637-653. Springer, Berlin, Heidelberg (2009)

10. de Melo Hernandez, F., Herndndez Melo, C.A., Tapia-Recillas, H.: On idempotents of a class of
commutative rings. Commun. Algebra (2020). https://doi.org/10.1080/00927872.2020.1754424

11. de Melo Hernandez, F., Herndndez Melo, C.A., Tapia-Recillas, H.: A recursive construction of units
in a class of rings. Preprint at arXiv:1911.07743 (2020)

12. de Melo Hernandez, F., Herndndez Melo, C.A., Tapia-Recillas, H.: Fermat’s little theorem and Eul-
er’s theorem in a class of rings. Commun. Algebra (2022). https://doi.org/10.1080/00927872.2021.
2024841

13. Niven, I., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers. Wiley,
New York (1991)

14. Wright, S.: Quadratic Residues and Non-residues: Selected Topics. Lecture Notes in Mathematics,
vol. 2171. Springer, Cham (2016)

@ Springer



Sao Paulo Journal of Mathematical Sciences

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer



INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA
Published Online: December 4, 2024
DOI: 10.24330/ieja.1596075

GROUP STRUCTURES OF TWISTULANT MATRICES OVER
RINGS

Horacio Tapia-Recillas and J. Armando Velazco-Velazco

Received: 20 April 2024; Revised: 29 July 2024; Accepted 15 September 2024
Communicated by Abdullah Harmanci

ABSTRACT. In this work the algebraic structures of twistulant matrices de-
fined over a ring are studied, with particular attention on their multiplicative
structure. It is determined these matrices over a ring are an abelian group
and when they are defined over a field the diagonalization of such matrices is

considered.
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1. Introduction

Circulant matrices ([4]) have received considerable attention of several research
groups for their own right and for their potential applications including image
processing, communications, network systems, signal processing, coding theory and
cryptography ([8],[9]).

Twistulant matrices were introduced as a generalization of circulant matrices,
and algebraic structures of these matrices over the complex numbers have been
determined ([6]).

In this note, following [6] right (left) S-twistulant matrices over a ring are intro-
duced and focus on given group structures of these matrices. The manuscript is
organized as follows: in Section 2 the definition of right (left) S-twistulant matrices
and basic results are given. Section 3 is devoted to the group structure of subsets of
the introduced matrices. In [6] the mentioned matrices are defined over the complex
numbers, C, but in our case the results are presented over any commutative ring R.

Later, in Section 4, the ring R will be taken to be a field with particular properties,
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the second author was partially supported by the fellowship number 764803 from Consejo Nacional
de Humanidades, Ciencias y Tecnologias (CONAHCYT), México.



2 H. TAPIA-RECILLAS AND J. A. VELAZCO-VELAZCO

placing special emphasis on the case of a finite field. In Section 5 several examples

are presented illustrating the main results. Final comments are given in Section 6.

2. Twistulant matrices

Let R be a commutative ring and R"™ be the cartesian product for n > 1. Let
o : R® — R™ be the permutation o(ag,a1,...,an—1) = (@n-1,00,...,0n—2).
Observe that ¢ = I, where o is applied n times and [ is the identity permutation,

from which it follows that 7 := o~

= o™ ! is the permutation on R" given by
7(ag,a1,...,an—1) = (a1,as,...,ap). For an element a = (ag, ay,...,a,—1) € R"
consider the matrix

circ,(a) = (a,o(a),...,c" (a)),
where (X)! denotes the transpose matrix of X. This matrix is called the right-

circulant matrix. Similarly the matrix
circ,(a) = (a,7(a),..., 7" (a))?,

is called the left-circulant matrix.

Now we introduce the S-twistulant matrices. Let § € R \ {0} and consider
the following map on R”, o3 : R" — R" defined by og(ao,a1,...,an-1) =
(Ban—1,a0,...,an—2). It is readily seen that this map is a permutation on R".

Observe that the map o3 : R — R" can also be defined, by

010 ... 0
001 ...0
OE AT | EE I
00 o0 ... 1
500 ... 0

Let M, (R) be the set of square matrices over R. We define the map rcircg :
R™ — M, (R) by

t
rcircg(a) = (a alg ... an_l) ,

where (x)! indicates the matrix operation transpose and aJé = (an_l)Jg for

7 =1,...,n — 1 with the convention an = a. By definition rcircg is R-linear.

Notice ker(rcircg) = {0} for all 8 € R\ {0}. The set of right S-twistulant matrices
of order n is defined as RC,, g(R) = {rcircg(a) | a € R"}.

The set of left S-twistulant matrices is defined in a similar way.
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Example 2.1. Let R be a commutative ring, a = (ag, a1, a2,a3) € R* and 3 €
R\ {0}. Then

a ap ar ax as
. _lads| | Baz ap a1 a
reirea(a) = aJj | Baz Baz a0 @
aJj Bar  Paz Paz ag

An example of a left S-twistulant matrix can be given likewise.

Notice that a circulant (and negacirculant) matrix is a special case of a (-
twistulant matrix when g € {1, —1}. Furthermore, the S-twistulant matrices are a

subclass of the so-called vector-circulant matrices ([7]).

Let
a1 a2 a1,n
a1 a2 azn
A= _ € Mn(R)
Gn,1  0an,2 cee Qpp
Recall that the anti-diagonal of A is given by the elements a1, a2 n—1,...,n—1,2,0n,1.

The transpose of A with respect to its anti-diagonal, denoted by A7, is defined as,

Ann An—1,n e Q1,n
AT Gpn—-1 Op—1n—-1 --- QA1ln-—1
an,1 An—1,1 cee 1,1

Example 2.2. Let R = Zg and A € M3(R) given by

1 0 8 4 5 8

A=1|2 3 5| thenA"=1]16 3 0

0 6 4 0 2 1

We have the usual properties (A™)” = A and (A+ B)” = A” + B” for A,B €
M, (R). The definition can be extended to (ro oo, rn,l) € Mixn(R) by
Tn—1
(’I‘O 1 ’l"nfl) = S M71,><1(R)~

1
To

Remark 2.3. We observe, by construction that, J; = Jg, in other words Jz is

symmetric with respect to this transpose operation.
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Let R be any commutative ring, consider the ring R, g = R[z]/(z" — ) and

define the polynomial representation map of R" as follows,
Ps:R" — Runp, Ps(a) =ap+ a1+ -+ a,_12"" "

It is easily seen that the map Pg is an isomorphism of R-modules. Further, applying
the permutation og introduced above to an element of R", it has the same effect as
multiplying by x the corresponding polynomial. In the study of constacyclic codes
this mapping is vital when § is a unit of the ring.

We recall the following ([1],[3]). Let R be a commutative ring. A linear code
of length n over R is just an R-submodule of R™. For 8 a unit of the ring R,
a linear code C over R is f-constacyclic if for any ¢ = (co,c1,...,¢n-1) € C,
og(c) = (B¢n-1,Co; ..., Cn_2) € C. Thus the concepts of a S-twistulant matrix and
[B-constacyclic code are related objects.

It is worth mentioning that the concept of S-constacyclic codes is related to the

ring R, g, as shown by the following result ([1]).

Proposition 2.4. Let 8 be a unit of the ring R. Then a linear code over R is
B-constacyclic if and only if its image under the map Ps is an ideal of the ring

Ron.p-

Let a = (ag,a1,...,ap—1) € R", then a = > I  a;_1e;. It is clear that
rcircg(a) = Y i, a;—1 rcircg(e;), where {e; | i = 1,2,...,n} is the set of canonical

generators of R"™.

Proposition 2.5. Let R be any commutative ring and § € R.

o Let A € M,(R) with rows Ay, As, ..., A,. Then
¢
AJs = (Ards Asds .. Ands) -

o rcircg(er) = I,,, where I, is the identity matriz of order n in M, (R).
e rcircg(ejyr) = Jg, j=1,...,n—1.

j—1
e ej=eJ) .

Proof. The first claim follows from the definitions. For the second and third claims,
it is enough to notice e;Jg = e;4; for ¢ = 1,...,n — 1 while e, Jg = fe;. As a

consequence, ;41 = elJ};, t=1,...,n—1and hence e;Jg = eljé,j =1,...,n—1.
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With these facts,

e e1Jg
es esJg
Jg=| : | =rcircg(es) =
e, en_1Js
ﬂel enJB
From the first claim,
elJé
ngg
Jé = : = rcircﬁ(eng) = rcircg(e;11),
en_lJé
enJ}
forj=1,2,...,n—1. O

Corollary 2.6. With the same hypothesis as in Proposition 2.5,

rcireg(enJp) = Jg = Bln.
As consequence, if 8 € U(R) is a unit of finite multiplicative order, o(f), J;(B)n =
I,. A similar consequence arises if the ring R is such that 5 is a non-unit with

finite nilpotency index.

Proof. Since Jg = Jg71J5 = rcircg(ey)Jp = reircg(enJg) = reircg(Ber) = B, it
is clear by Proposition 2.5. [

Now we define the following subsets of the R-algebra M,,(R) of n x n matrices

over the commutative ring R.

RC, 5(R) = {rcircg(a) :a € R"}, RC, 3(R) ={A € RC, (R) : det(A) is a unit}.

3. Structure of g-twistulant matrices

By the R-linearity of the homomorphism rcircg, RC,, g(R) is generated as an R
module by the set
{rcircg(e1),rcircg(es), . . ., rcircg(ey,)}. Indeed, given a = (ag,a1,...,a,-1) =

ape; +ajez + ...+ ap—1€n, then
rcircg(a) = ag reircg(er) + aq reircg(es) + . .. + an—1 reircg(ey,).

From Proposition 2.5 we have,
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Proposition 3.1. Given 3 € R, the R-module RC,, 5 is generated by
A= ALy, Jg, ..., T3 2 J§ =B},
i.e., given a = (ag,a1,...,a,—1) € R™,
rcich(a) =aol, +ar1Jg+---+ an_ljg_l.

We know from Remark 2.3 that the matrix Jg is symmetric under the transpose
with respect to its antidiagonal. The following is a direct consequence from this

fact.

Corollary 3.2. Let R be a commutative ring with identity. Given

a= (ap,a1,...,an—1) € R", then rcircg(a)™ = rcircg(a).

Proposition 3.3. Let 3 € R. Then (RC, 3(R),+, X,-) is a finitely generated

commutative R-algebra.

Proof. It is clear that (RC, 3(R),+) is an R-module. From Proposition 3.1,
(RC,, 8(R), +, X, ) is closed under the operation multiplication of matrices, X, as

from Corollary 2.6, given r,s € R,
rJésJé = rsJéH = rsJé"Jrk = 5“J§ for some integer a and 0 < k <n — 1.

Next we prove that given a,b € R", rcircg(a)rcircg(b) = rcircg(b) reircg(a), that

is clear by Proposition 2.5: rcircg(e;41)reircs(e;11) = JéJg = J;;rj. O

Now we establish the following,

Theorem 3.4. Ifrcircs(a) € RC,, 5(R) is invertible, then rcircg(a) ™! € RC,, 5(R).

In other words, the set of invertible elements RC,, g(R) is an abelian group.

Proof. Let a = (agp,a1,...,an,—1) € R™ be such that rcircg(a) € RC, 3(R) is
invertible. Let A = rcircg(a)~! with rows Ay, As, ..., A,. From Proposition 3.1,

rcircg(a) = apl, +ardg + ... + an_l.]g_l and
Arcircg(a) = agA+ a1Adg + ... + an_lAJg_l = I,, = rcircg(eq).
From Proposition 2.5,
apAr +a1 A1 Jg+ ...+ an_lAng_l = (1 0 ... 0) =ey,
hence,

aoAng_l + al(AlJﬂ)Jg_l + -+ (ln_l(Aljg_l)Jg_l =e; = 61.]%_1.
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Then in matrix notation,

Al A1 Al
AlJﬁ AlJB Aljg
agp . +aq . J5+~--+an,1 . J571 =1,,
Ayt Ayt Ayt
hence,
Ay
A1 Jgs
reircg(a) = I,
Ay gyt
i.e., A7! = rcircg(A1) which implies that rcircg(a) ™! € RC,, 3(R). O

It is worth mentioning that 8 could be a non-unit in the ring R and rcircg(r)

still be invertible as shown in the following example:

Example 3.5. Let R =7, 3=2¢€ R and let a = (1,1,0) € R3. Then

0
Jg=10
2

S O =
o = O

1 1 0
and rcircg(a) =0 1 1],
2 01

obtaining det(rcircg(a)) = 3 € U(R) and therefore rcircg(a) is invertible. In fact

rcircg(a) ! =

NN W

1
3
2

w = W

Observe that if the first row of the matrix rcircg(a)~! is known, the matrix can
be obtained with the method described in the proof of Theorem 3.4.

4. Twistulant matrices over fields

Now assume the ring R is a field. In the following lines by using a method based
on the discrete Fourier transform (DFT) it will be seen that Proposition 3.3 and
Theorem 3.4 also hold.

In the case where the field is C, the field of complex numbers, following section
3.2 of [4] we recall the special case in which § = 1. In this case the circulant

matrices are diagonalizable over C via the discrete Fourier transform matrix F'.
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Recall (see [5], [2]) that over C, the Discrete Fourier Transform matrix is,

1 1 1 1
1 w w? wn!
1 2 4 2(n—1)
F=—"11 w w w
NG
1 wn1 w2(n—1) o w(n—l)(n—l)

1
Vn
is a Vandermonde type of matrix, and therefore, invertible. These considerations

where w is a primitive n*®-root of unity and is a normalization factor. Notice F'

can be extended to circulant matrices over a finite field F, (see [10] for instance)

th

provided there is an n*"-root of unity w € F,. For our discussion, the constant ﬁ

is not relevant and it is omitted.

Theorem 4.1. Let F be a field containing an n™-root of unity, w € F, and let

€2

e3
J=| | e M,(F).

€1

Then J is diagonalizable by the Discrete Fourier Transform matrix F, indeed
F7YJF = diag(1,w,w?,...,w" 1) = D,,.

Proof. The claim follows from

1 w w? e wn!
1 w? w? ... w2(n=1)
JE=1{: : : =FD,.
1wl W2 (D=1
1 1 1 1

O

Corollary 4.2. Circulant matrices in M, (F) are diagonalizable over any field F

th

that contains an n'*-root of unity.

Proof. Given F~1JF = diag(1,w,w?,...,w" 1) = D,,, from Proposition 3.1 with

B =1, for a=(ag,a1,...,an_1) € F?,
F~'rcire(a)F = aol,, + a1Dy + ... +ap_1D"?

which is a diagonal matrix. ([
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Example 4.3. Over the field Fyg, in Mg(F19) the matrix

0 1.0 0 00

0 01 000

0 00100
J =

000010

0 00 001

100 0 00

is diagonalizable by means of the discrete Fourier transform matrix

1 1 1 1 1 16 16 16 16 16 16

1 8 7 18 11 12 6 2 5 3 17 14
P 1 1 1 7 11 whose inverse is F—1 — 6 5 17 16 o5 17

1 18 1 18 1 18 6 3 16 3 16 3

1 11 7 1 11 7 16 17 5 16 17

1 12 11 18 7 8 6 14 1v 3 &5 2

such that, F~1JF = diag(1,8,7,18,11,12).

Let n be a positive integer, F, a finite field with ¢ = p™ elements and 8 € F,
be such that an n'"-root of this element is in the field Fy. In case this does not
happen, the splitting field of the polynomial ™ — 3 is considered. The splitting
field is of finite order n over the base field F, and it has |F,|" elements. So we can
assume the field we are working on contains an n'®
Suppose 3 € F is such that there exist \; = 8% € F. Define \;, = 5%, k=

2,...,n—1and let w € F be an n*®-root of unity. Let F € M,,(F) be defined by

-root of the element .

1 1 1 e 1
A1 Aw Aw? - Awn !
F=1 X Agw? Agw* ces Agw?(=1) . (%)

n—1

A—1 Ap_1w )\nflwg(n_l) S )\nflw(n_l)("_l)

Lemma 4.4. The matric F € M,,(F) is non-singular and hence invertible. Fur-

thermore,

.Fil = FﬁlD)\fl
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where Dy = diag(1, A1, X, ..., A\n_1) and, for w an n'*-root of unity in F,
1 1 1 1
1 w w? Wt
F=11 w2 wt w2(n—1)
1 ! w2(n—1) o w(n—l)(n—l)

Proof. Let Dy, = diag(1, 1, \2,...,An—1). The claim follows from the fact that
F = DyF, and then det(F) = det(DyF). As F is a Vandermonde type of ma-
trix, it is non-singular over any field containing an n-th root of unity, and there-
fore invertible. Now F~! = (DyF)™! = F7'D;' = F~'Dy1, where Dy-1 =
diag(1, A7 5 A0 A1), O

» Mn—1

Theorem 4.5. Let § € F and F be as above and assume there is \y = ﬁ% eF.
Let

and suppose w € F is an n'*-root of unity. Then, Jg is diagonalizable by F and
FlJsF =MD,

Proof. It is enough to notice

A1 AMw Aw? Aw™ !
Ao Aow? Aow? . Agw?2(n—=1)
JsF = : : : = F Dy,
At Apoiw™ A2, DD
B B g g

computation that follows easily from the fact that multiplying the square matrix
F (see (%)) on the right by the diagonal matrix A\ D, = (A, \jw, ..., \iw"™ 1) is
equivalent to multiplying each column of F by the i-th element of the diagonal and

n

observing that A\,_1A\; = ;15% = g. 0

Corollary 4.6. Let F be a field with an n'*-root of unity and let 0 # 3 € F. Assume
there is \y = B% € F. Then,

(1) The matriz rcircg(a) € M, (F) is diagonalizable over the field F.

(2) For any A, B € RC,, g(F), AB € RC,, 3(F) and AB = BA.
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(3) Ifrcircg(a) € RC, g(F), rcircg(a) " € RC,, g(F). Further,
rcircg(a) " = Flaoly + arhi Dy + .. an 1 X7 DL THFTL

Note that agl,, + a1\ Dy, +...+an—1 A?ilDwnfl is a diagonal matrix and hence
easily invertible in a field. It can be seen that each element of the diagonal is
the evaluation of f(X) = ag + a1\ X + ao i X% + ...+ ap 1 AP X1 at W’ for
1 =20,1,...,n — 1. In other words, the diagonal elements are the values of the

: : n—1
discrete Fourier transform of the vector (ag, a1, ..., a1 A7 7).

Corollary 4.7. With the same hypothesis as in the previous corollary, assume

Jg € M, (F) is diagonalizable. Then given a = (agp, a1, .. .,an-1),

det[rcircg(a)] = det(agly, + a1 1Dy + ... + anfl)\?ilDwn—l).

5. Examples

In this section several examples are provided illustrating the main results. The

software SageMath ([11]) has been used for computations.

Example 5.1. Let 8 = 12 and consider the 3*'-root of the unity w = 7 € Fig. If
AL = B% = 10, then

10 0 0
Fllser=|0 13 0],
0 0 15
where
1 1 1 13 7 14
F=|10 13 15[ andF'=]13 1 3
5 17 16 13 11 2

Example 5.2. Consider the finite field Fqq, let 8 = 10 and w = 9 a 5*-root of
unity. Then Jjg € M5(F11) is diagonalizable. Let Ay = 7, then

111 1 1 9 6 4 10 3
78 6 10 2 9 8 1 7 5
F=1593 1 4|andF =9 7 3 6 1
2 6 7 10 8 9 2 9 2 9
349 1 5 9 10 5 8 4

Thus F~1J1gF = TDg = diag(7,8,6,10,2). On the contrary, if 3 = 6, then Jg €

M5 (Fq;) is not diagonalizable since A> — 6 = 0 has no solution in Fy;.
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Example 5.3. Consider the field Fy; and let a = (3,2,1,0,2) € F};. With the

parameters given in the previous example, i.e., § = 10,w =9 and \; =7,

3 2 10 2
9 3 210
reircip((@) =10 9 3 2 1],
10 0 9 3 2
9 10 0 9 3

and from the Corollary 4.6
reireio(3,2,1,0,2) 71 = F[3L5 +2(\ Do) +1(A1Dg)* +0(A1 Dg)* +2(A Do) | T F 1,

where F and F~! are given in the mentioned example. Thus,

9 2 2 4 9
2.9 2 2 4
rcirc1(3,2,1,0,2)"' =7 2 9 2 2
9 7 2 9 2
9 9 7 29

It can be seen that, for instance the third element in the diagonal matrix Z?:o a;(A\ D)’
is, f(w?) = ag+ar\iw? +ax \3w? 2 +az 3w 3 +ag\fw? ) ie., f(W?) =3+14+3+7 =

3. In the same fashion it can be seen that f(w?®) = 4 and f(w?) = 10, and also,
from Corollary 4.7, det(rcircio(a)) = 4 = det(diag(6, 3, 3,4, 10)).

Example 5.4. Consider the finite field Fg = F3[X]/(X? + 2X + 2) with 3% =
elements. Then Fg = {ap + a17 | ag,a; € F3,22 +22+2=0. Let w =1+ € Fy
which is a 4*"-root of unity and let 5 = 2. Note that \; = 21 =z € Fy. Then,

Jo

Il
v O o o
o = o o

0
1
0
0

o o o =

while

1 1 1 1
1+2 2 2
Fo| T AT SET L F =
1+ 2+42x 1+4+x 2+42x

1+ 2x T 24 x 2x

1 242 2422 2z
1 2x 1+2 24z
1 1422 2422 x
1 T 142 142«
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Then, F~1JgF =

6. Final comments

It is shown that twistulant matrices over a ring can be thought as elements of a
finitely generated algebra, fact that is used to prove that the set of these matrices
is closed under the usual multiplication, and that if a twistulant matrix is invertible
its inverse is also twistulant. In the case where the ring is a field, particularly a
finite field, it is shown that the twistulant matrices can be diagonalized by means of
a Discrete Fourier Transform-type matrix. This fact is used to show that the group
of twistulant matrices over a finite field is commutative with the usual matrix mul-
tiplication though this is a direct consequence from Proposition 3.3 and Theorem
3.4.
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Abstract

The purpose of this manuscript is two-fold. First, properties of the ring
Ry = Zy +uZy and the set of ideals are established. Second, results on cyclic
codes of length n, gcd(2,n) = 1, over the non-chain Frobenius ring R and their
description by means of idempotent elements are presented.
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1 Introduction

Cyclic codes over finite rings have been studied intensively during the last decades
after the seminal work of Hammons et al. [1]. Results on cyclic codes over finite
chain rings appear in several manuscripts such as [2—4]. Cyclic and constacyclic
codes over some non-chain finite commutative Frobenius rings with identity have
been discussed in various papers including [5]. Results on linear and cyclic codes
over the ring Z, + uZ , where u satisfies u? =0 and g = p™, p a prime, are presented
in [6, 7] and [8] for the case ¢ = 4 and in [9] for the case g = 8.

The present work is two-fold. First, properties of the ring R}, = Zy + uZy, k > 1,
including the fact that it is a finite non-chain Frobenius ring, and the set of ideals,
particularly principal ideals, are given. Second, results on cyclic codes of odd length
over this ring are presented which are described by means of idempotent elements.
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The manuscript is organized as follows: In Sect. 2 the necessary background mate-
rial is given. In Sect. 3 results on the ring R, k > 1, are presented and in Sect. 4
we give results about the set of ideals of the ring, particularly principal ideals. Sec-
tion 5 is devoted to results on cyclic codes of odd length over the mentioned ring,
described by means of idempotent elements. In Sect. 6 examples are provided illus-
trating the main results of the manuscript, and the Conclusions are given in Sect. 7.

2 Preliminaries

In this section definitions and basic results from commutative algebra used
in the manuscript are recalled. We refer the reader to [10] and [11] for details.
By a ring R we mean a commutative ring with identity (1 € R). Given a non-
empty subset S C R, the ideal generated by S will be denoted by (S), i.e.,
Sy={Yr,rsilrieRs;eSmeN}. If S={s,...,s,}, it will be writ-
ten (s;,...,s,) for (S). The annihilator of an R-module M is the ideal
AnnM)={reR|r-M =0}.

An R-module M is simple if and only if M = R/m, where m is a maximal ideal of
R, i. e., M has no nonzero submodules. The length of M, £ (M), is the number of links
of the composition series for M or oo if M has no a finite composition series, where
by a composition series we mean a chain M =M, D> M, D ... D M;,_, D M, =(0)
such that each M; /M, is a nonzero simple module. When £, (M) < oo this number
is unique by the Jordan—Holder theorem (see [10], Proposition 6.7).

The ring R is called local if it has a unique maximal ideal m. If R is a local
ring with maximal ideal m, the quotient ring R/m is the residue field of R, which
is a finite field F, where g = p™ for some prime p and m a positive integer. This
information is indicated by (R, m, R/m) or (R, m,[F ).

One of the algebraic structures to be considered in this work is the Frobenius
ring. There are several (equivalent) definitions of a Frobenius ring (see [12, 13]),
although for our purpose the following is enough: let (R, m, R/m) be a finite local
ring. Then R is Frobenius if and only if Soc(R) is a simple R-module. In particu-
lar dimg,, Ann(m) = 1 where Ann(m) is the annihilator ideal of m. The group
of units of R is denoted by U(R). A ring R is called a chain ring if its collec-
tion of ideals is totally ordered by inclusion. Given a finite local ring (R, m,[F ),
there is a natural homomorphism u : R — [, given by u(r) =r = r + m, which
extends naturally to u : R[x] — [Fq[x] as: if f(x)=ay+ax+ - +a,x" € R[x]
then u(f)(x) =]_" =ag+ax+ - +a,x", where u(a;) =a;. We say that a monic
polynomial f(x) € R[x] is basic irreducible if ]_”(x) € F,[x]is irreducible. Hensel’s
lemma (see [11], Theorem XIII.4) guarantees that given a factorization as a prod-
uct of pairwise coprime polynomials over [, [x] it lifts to a factorization of basic
irreducible coprime polynomials over R[x]. If I is an ideal of a ring R, the set
IIx]={rg+rx+--+rx" €R[x] | r, €1,0<i<n}is an ideal of R[x]. If / is an
ideal of a ring R and R a subring of a ring S, the ideal IS is called the extension of
ItoS.
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3 Thering Ry = Zyx + UZ

Let R, :={a+ub|abe& Zy k> 1,u*> = 0} where Zy is the ring of integers
modulo 2%. As usual we take the complete residual system {0, 1,2, ... ,2F— 1} as
the respective set of class representatives for Z.

Some properties of the ring R, are sumarized in the following,

Proposition1 Let R, = {a+ub|a,b € Zy,k > 1,u? = 0}. Then

()The ring R, has cardinality 2°* and it is isomorphic to Z,.[U]/{U?).

(ii)Thering (R = Zy + uZy, m = (2,u), R, /m = F,)is alocal non-chain Frobenius
ring with nilpotency index of mequal tor = k + 1.

(iii))The group of units of the ring is U(R,) ={a+ub|a € lUUZy)} with
UR| = p(2%) = 221,

(iv)The j-power of the maximal ideal m is m/ = (2/,2/~'y) and it has cardinality
2xk=i+lfor j=1,2, ..., k.

(v)The ring R, has length ka (Ry) = 2k.

Proof 1t is easy to see that the ideal (2, u) generated by 2 and u is the unique maximal
ideal of R,. Observe that the ideals (u) and (2/) for 1 < j < k — 1 are not comparable
by inclusion so R, is not a chain ring. By observing that Ann({2,u)) = (2*~1u), the
fact the ring is Frobenius follows from the definition. In order to prove (v), just note
that

Ry DmD(2)D D2 Nom/=(2,27u) > () > >mk > m! =(0)

is a composition series for the ring R,. The rest of the claims are obvious. O

4 The set of ideals of R,
Since the maximal ideal of R, is generated by two elements, the other ideals of
the ring are also generated by at most two elements. In the following lines results

on the set £, of ideals of the ring R, are presented, in particular the number of
principal ideals is determined.

4.1 Principal ideals

We observe that if I = (2%« + fu) is a principal ideal of R, with a € U(Zy),
B € Z,, then I = (2¢ + vu) for some v € {0,1,2,...,2¢ — 1}.
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Table 1 Number of fixed

elements |X” | in the ring R, by Xy Xy Xy Xl
each unit y 1 64 145 8  3+6u 4  S5+7u

3 4 1+6u 16 3+7u 4 T+u

5 16 1+7u S5+u 8 7+ 2u

7 4 3+u 542u 16 7+ 3u

1+u 8 34+ 2u 5+3u 8 7+ 4u

14+ 2u 16 3+3u
1+ 3u 8 3+4u
1+4u 32 3+ 5u

5+4u 16 7+ 5u
5+ 5u 8 7 + 6u
5+ 6u 16 7+ Tu

A A B2 B B~
~ A BB B2 B b

Since R, is finite and local, observe that two principal ideals are the same if
and only if their generators are associated. Let I' = U(R;) be the group of units of
R, acting by translation on R, (Table 1).

By the Frobenius—Burnside Lemma (see [14], Theorem 3.22) we can state the
following:

Theorem 2 Let y €', X¥ = {x € R | y - x = x} be the set of elements fixed by y
under the considered action. Then the number N of principal ideals I of R, such
that

I=2%4+vu), 0<d <k, vEZyorl=(2%),
is
22k 1 2 IX7.
yel’

Example 3 Let Ry = Zg + uZg. For each y € U(R5), using SageMath [15], it is seen
that,

where X” = {x € X | y - x = x}. Thus ZyeF |X”| = 320 and by Theorem 2, there
are:

320
% 2 X7 =

principal ideals. Note that the trivial ideals (0) and (1) are included.

4.2 Two-element generated ideals
The cardinality of the ring R, increases with the values of k, as are the number of

ideals, both, those generated by one element and those generated by two elements.
In the following, general results about the two-element generated ideals are given.
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Zy +uly (44u,d+ '3“)\
/T =T(2’ u) {4 +£u)
{8,u) 2 = (4,2u)
) (z+u>\ @ e T " A
T ’\\\ I () (8+u) (8,2u) (4+2u) @
(u) (4 +u) m? = (4,2u) '\ T ]‘ I /
T / T (2u) (8+2u) m® = (8, 4u)
(2u) (4 + 2u) (4) ]‘ /' <|~
{du) (8+ 4u) (8)
m® = (4u) mé = (8u)
mt = (0) m° = (0)

Fig.1 The set of ideals of the ring R, (left) and for the ring R, (right)

For small values of k with the help of SageMath ([15]) we were able to give the
complete set of ideals. See the Fig. 1.

Proposition 4 Let Ay, A} € Ry, = Zy + uZy. Then, the ideal I = (4, 4,) is a two-
element generated ideal of R, if and only if Ay & (A,) and A, & (4y). Consequently,
for 1 <d <k-1, the ring R, has at least the following two-element generated
ideals:

(24,u), (24, 2u), (24,2%u), ..., (29,24 ).

Given d, e such that 0 < d,e <k, let I“fﬁ = (29 + vu, 2° + pu) with v, p € Z. In
the case where d = e we write I¢ for 14,

Proposition 5 Let l“ip = (29 4+ vu,2? + pu) be a two-element generated ideal. If
v # pmod 2, then

I =% u).
Proof From the hypothesis it follows that v—p is a unit and since
Q4 +vu)— Q%+ pu)= (v —pue Iﬁp, ueE Iﬁp. Ifue I“ip it can be easily seen that
2erl, O

The next results are easily proven.
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Proposition 6 Let If’;j, d < e, be an ideal of the ring R,. Then if there is an @ € Z
such that p — 2¢~% = 2%a, If’; = (29 + vu).

Proposition 7 Let If’;, d < e, be an ideal of the ring R,. If p € U(Zy) the ideal is
generated by two elements and If'; = I(‘)l "

As an example of the previous proposition we have the following

Example 8 Let pr be an ideal of R;, k> 1, as in Proposition 5. Given p = év,
5 = 2la, then

d.k
lj{p = (29 vu) = Iy,

5 Cyclic codes over R

In this section cyclic codes over the ring R, = Zy + uZ, are considered and
described by means of idempotent elements. Results about constacyclic codes and
their idempotents over finite chain rings are given in [16].

5.1 Basicresults

Let R be a finite commutative local ring with identity, maximal ideal m and resi-
due field F, = R/m. The image of an element r € R under the canonical mapping
R — [, will be denoted by 7. Let R[x] be the polynomial ring over R. Recall that
an element f(x) € R[x]is called basic irreducible if its image f(x) € [F,[x]is irreduc-
ible. The following result is easy to prove.

LeTma 9 Let R be as above. Then f(x), g(x) € R[x] are relatively prime if and only
if f(x) and g(x) are relatively prime inF,[x].

Let R be as above. An R-submodule C C R"is called a linear code of length n. Let ¢
be the standard cyclic shift operator on R": (ry, 7y, ..., F,_1) 5 (Fpe 1570 Tys o v s Tyn)-
A linear code C of length n over R is cyclic if 7(c¢) € C whenever ¢ € C.

For a ring R the polynomial representation of R" is the R-isomorphism given by
P R" — R[x]/{(x" = 1), Plag,ay, ..., a,_;) = ag + a;x + - + a,_;x"~'. By means
of the polynomial representation of R" a cyclic code of length n can be regarded as
an ideal of the polynomial ring R, = R[x]/{x" — 1).

We have the following,

Proposition 10 The ring R, ,, = R;[x]/{x" — 1) is not a principal ideal ring.
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Proof The map y : Ry, — Ry given by Yo ax’ = Y~ a; is a surjective ring
homomorphism. The ideal y~!(m) of R, s not principal, otherwise if y~Ii(m) = (r)
for some r € R,

(r) =r(r) =y~ (m)) = m = (2, u),

would be principal, a contradiction. O

Now consider the ring R, = Z, + uZy which is local with maximal ideal
m = (2,u), and observe that by means of the inclusion map 1, R, can be consid-
ered as a subring of R, [x]. If fis a basic irreducible polynomial of R;[x], there is
the canonical mapping 7 @ R;[x] — Ry, = Ry [x]/(f).

The next proposition will be useful for describing cyclic codes.

Proposition 11 Let f € R;[x] be a monic basic irreducible polynomial and
Ry = Rylx1/{f). Then any ideal T of Ry is of the form

Z: Ika,

where I'R, ; is the ideal extension of the ideal I of R, to the ring Ry ;.

Proof Given fand R as above, since R, is local then R, , is an unramified exten-
sion ring over R, i.e., (Rk,f, M, ka /M) is a local commutative ring, with maximal
ideal M = mka (see [11], XIV.8 for details). In particular any ideal Z of Rk’f is
such that Z C 9. Let g € Ry [x] and consider g + (f) € R;. Since fis basic irre-
ducible, there are two possibilities, gcd(g,j_”) =1lor gcd(g,f) :]_“. If the first pos-
sibility holds, from Lemma 9, g and f are relatively prime in R,[x], i. e., there are
Ay, Ay € Ri[x] such that A,g + A,f = 1 which implies ;g =1 mod (f), thus g is a
unit and hence Z = (1 + (f)).

If on the contrary, gcd(g,f) =J_‘ we can write in Ry [x], g = fg + r, r € m[x] but
that means g + (f) € mR, , = IN. Let Z C IM be an ideal such that g + (f) € Z and
let I = z7'(Z) which is an ideal of R,[x]. Since in particular r € 7= (g + (f)) C I
then #(z~'(g+(f) = zn(r) Ca(x~' (D) = n(I) =IR;; then TCIR;; Let
s+ (f) € IR;; = n(I), we have z7'(s +(f)) € I = z~'(Z) from which it follows
that s + (f) € Z and hence IR, C Z. Thus T = IR, ; |

From the previous proposition it follows that the configuration of the set of
ideals of the ring R  is the same as that of the ring R,.

Let n be an odd integer, x" —1=ff,...f,, where the f’s are distinct
monic basic irreducible pairwise relatively prime polynomials in R [x] for
i€{1,2,...,m}, and let R, = R[x]/{(x" — 1). The following result is a direct
consequence of the Chinese Remainder Theorem (CRT).

Theorem 12 Let n and X" — 1 be as above. Then,
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m
Rin = @ Ris
i=1

where Ry, = Ry [x1/{f;). In particular, any ideal I of Ry, is such that

m
= IR
i=1

where I, is an ideal of R,

Corollary 13 Let n be odd, L, be the set of ideals of the ring R, and m the number
of distinct monic basic irreducible coprime factors of x" — 1. Then the ring R, has
| L.\ ideals.

We recall that the ring R, is local with maximal ideal m = (2, u) and re_sidue field
F,. If f € R,[x] its image under the reduction map to [,[x] is denoted by f. The fol-
lowing result is easy to prove.

Proposition 14 Ler x" — 1 =f\f, ...f,, where n is odd and the f’s are distinct
monic basic irreducible pairwise relatively prime polynomials in R,[x] for
JjEe{1,2,...,m}. Let xt—1= Hl’.”zlfi be the corresponding product of irreducible
factors in'F,[x). Then a non-zero principal ideal C = (f + (x" — 1)) C Ry, is trivial
if and only ifgcd()_‘, X' —1)=1lin F, [x].

5.2 Idempotents and cyclic codes

In this section cyclic codes over the ring R, are described by means of idempotent
elements. First, general definitions and results are recalled.

Let R be a commutative ring with unity. An element e € R is called idempotent
if e = e. Two idempotent elements e and f are said to be orthogonal if ef = 0. An
idempotent e is called primitive if e = f + g with f and g orthogonal idempotent,
then f = 0 or g = 0. A set of idempotent elements {e;, e,, ..., e, } such that 37" =1
is called a complete set. Furthermore if ee; = 0, i #j, the set is called a complete
set of pairwise orthogonal idempotent elements. The set of idempotent elements of a
ring R will be denoted by E(R).

We recall that a ring R is said to be decomposable if there exist a finite collection
{Ry, ..., R} of non-trivial rings such that R = &!_R;.

Proposition 15 Let R be a commutative ring with identity. Then R is decomposable,
R = ®!_|R;, if and only if there is a complete set of non-trivial pairwise orthogonal

idempotent elements {e, e,, ..., e,} of R such that R; = e;R.

Proof Suppose R is decomposable and let e; = (0, ..., 1,...,0) be the element of
EB§=1R1' with 1 at the ith coordinate and zero elsewhere. Then {e, ..., €,} is a complete
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set of pairwise orthogonal idempotent elements of ®§=1Ri- It follows that if # is an
isomorphism between R and ®§:1Ri, the elements {n‘l(ei), i=1,2,..,t} comprise

the desired set of idempotent elements of R. The converse is obvious. O
The following result is easy to prove from the definitions.

Proposition 16 Letr R be a commutative ring with identity. The following statements
are equivalent:

(i) Rislocal.
(i) R has no non-trivial idempotent elements.
(iii) R is indecomposable.

In order to give a set of idempotent elements of the ring R, = Ry [x]/{x" — 1),
an explicit isomorphism determining the Chinese Remainder Theorem is recalled
(Theorem 12).

Let n be an odd integer, x" — 1 = f -+ f,, a product of distinct monic basic irre-
ducible pairwise coprime polynomials in R, [x] and definey : R, , — @, Ry
by

l[/(C + <xn - 1>) = (Cl + <fl>’ wees Cpy + (fm))

where ¢ = ¢; mod (f;)fori=1,2,..,m.
It is easy to see that y is an isomorphism whose inverse is given as follows.
Let x" —1=]]~,f; be the product of irreducible polynomials in F,[x]. Let

fi= Hi#f-, then ged(f;, ....f,,} = 1 and from Lemma 9, f, ....f,, where f, = s
are relatively prime. Then there exist A; € R, [x] such that

M+ Afy+ -+ AL, =1
Observe that P ﬁfj = /lfi =1 mod (), i=1,2,..,m. The map

j=1

¢ @:11 Rys — Ry, defined as

¢(Cl + <fl>’ C2 + U‘z), ceesy Cm + <fm>) = Z A‘f;cl + <xn - 1>,
i=1
is the inverse of the map y defined above.

Proposition 17 With the notation as above let R, = Zy + uZy, n a positive odd
integer and x" — 1 = f\f, ... f,, the decomposition of x" — 1 as a product of monic
distinct basic irreducible pairwise coprime polynomials. Then

Ek,n = {@l,éz,...,ém}

where ¢; = /lfi, fl = Xf_l, and ;,i=1,2,...,m as above is a complete set of primi-

tive orthogonal idempb/tent elements of R, = R [x]/{x" = 1).
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Proof Let ¢; = ¢(e;) where e; is the i-th coordinate vector of ;" R, and ¢ is as
defined above. From the definition of ¢ it can be seen that &, = Af,. O

The following easy result will be used later.

Lemma 18 Let C = {f) be a principal ideal of a commutative ring R with identity
and let e be a nontrivial idempotent element in C. Then,

(a) C={e)ifandonlyif f = ef . Moreover, ec = c for all c € C.
(b) The idempotent e such that {f) = (e) is unique.

Now we have,

Theorem 19 Let n be an odd integer, Ry, = Ri[x]/(x" — 1) and x" =1 =], f;
be the representation of x" —1 as a product of distinct monic basic irreduc-
ible pairwise relatively prime polynomials in R,[x]. Let C=(f+ (x"—1))
be a non-trivial principal ideal of R, and assume f = ]31 j;z ]33 where
JEM={L12,.,m},l=1,2,..,s. Then, the idempotent e+ x"—1) € Ry such
that

C={(e+(x"—1))
is given by
e+ (x"—1)= Zéi+(x”— 1),

L

where i € M\{j,, ], ..»j;} and {&; + (x" — 1)} is the complete set of primitive pair-
wise orthogonal idempotent elements given in Proposition 17.

Proof Since f=T[_,f, let F=T11f with i€ M\{j,jpj;}. Thus f and
f are relatively prime and there are 1,4 € R,[x] such that Af + Af = 1. Let
ep + (x" = 1) = Af + (x" — 1) € Ry, It is easy to see that this is an idempotent ele-
ment. Observe that

A = 1= A, mod (f),i € M\ (i jas -wwsdy )
and
Af =0mod (f,),1=1,2,....s.
By construction,
Jep+ (X" = 1) =fOf) + (" = 1) = f(L = A) + (" = 1) = f + (" = 1).

and from Lemma 18 it follows that (f + (x" — 1)) = (e, + (x" — 1)). O
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Corollary 20 With the above notation, R, ,, = R [x]/{x" — 1) has 2" idempotent ele-
ments, where m is the number of basic irreducible factors of X" — 1in R, [x].

The general idea of the proof of the following result is easy or it can be found in
([17], Theorems 4.3.2 and 4.3.8).

Proposition 21 Let n be an odd integer, R,=F[x]/{(x"—1) and let
xX"—1=g,8, &, be the expression of x" — 1 as a product of distinct monic irre-

ducible pairwise relatively prime polynomials in F,[x], and let §; = )% Then the
set{6,...,0,Ywith0, = A8, i =1,2,...,m, A; such that \;g; = 1 mod (g;) is a com-
plete set of primitive pairwise orthogonal idempotent elements in R,

The previous result together with the next one will provide a way to determine the
set of primitive idempotent elements in the ring R; .

Proposition 22 ([18], Proposition 4.1) Let R be a commutative ring and N a nilpo-
tent ideal of R with nilpotency indext > 2. Let s > 1 be the characteristic of the quo-
tient ring RIN. If e is an idempotent element of RIN then,

=1

e

is an idempotent element of the ring R. Moreover, if there is a collection of primitive
orthogonal idempotent elements of RIN it lifts to a set of idempotent elements of R
with the same property. Also, |[E(R)| = |E(R/N)| where E(R) is the set of idempotent
elements of R.

Now we apply the previous results to our situation. Recall that
Rin = Rylxl/(x" = 1), m; , = mR,, is an ideal with nilpotency index ¢ =k + 1,
where m is the maximal ideal of R, and R, ,,/m, , = F,[x]/(x" — 1) has characteristic
s=2.

Theorem 23 With the notation as in Proposition 21,

E(Ry,) = (0D, (6%, ... (0,)%)

is the complete set of primitive pairwise orthogonal idempotent elements of the ring
Ri

From Theorems 19 and 23 we have the following,

Theorem 24 Let C = (f + (x" — 1), ug + (x" — 1)) be a two-element generated ideal
of Ry ,- Then

C={(e;+{(x" = 1),ue, + (x" = 1)),

where e; + (x" — 1) and e, + (x" — 1)) are the idempotent elements associated to
[+ (" —=1)and g+ (x" — 1) respectively, in the sense of Theorem 19.
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6 Examples

In this section examples illustrating the previous results are provided in which the
calculations were carried out with SageMath ([15]).

Example 25 The following illustrates Theorem 19. Let R; = Zg+ uZg and
x5 — 1 = fifsfufs where
fi=x+T, h=x"+x+1, fi=x"+4° + 66> + 3x + 1
f=xt 438+ +dx+ 1, fi=x" + 0+ +x+ 1

in Rslx]. The idempotent generator for the ideal
C = (x%+5x° + 3x* + 52° + 2% + 4x + 1) = (f,f;) will be determined. Observe that

under the reduction map, x5 — 1 = g,8,838485 where

gr=x+1, g=x+x+1, gg=x*+x+1
=4+, g =+ 2+ P x4+ 1.
A complete set of idempotent elements in R;s = FK[x]/(x —1) is
E(Rls) = {91 N 02, 93, 64, 95} Where,
O =" +xB x0T+t Hx+
0, =B 0 BT+ %+,
0, =P+ 2+ 3+ + 5+ +x,
0y =x" + x5 + 7 +xM #2727+ 20+ 2,
Os =x"* +xB + X2 +xM +0 + 8+ 0+ + P+
Since the ring R, 5 has characteristic s = 2, and the maximal ideal m of R ; has nilpo-
tency index ¢t = 4, from this complete set of pairwise primitive idempotent elements
and Theorem 23, a complete set of idempotent elements of Ry ;5 = R[x]/(x!* — 1)
can be given: E; |5 = {e}, e,, €3, ¢4, €5} withe¢; = (0,),i = 1,2,..., 5. Specifically,
e =T B 2 T O P B+ R+ x4 D),
e =M P e+ 06+ X 6+ X+ 6+ +x+6,
ey =4x™ +4x3 4+ x1? + Ao + 2010 + 2% + 308 + 4xT + 20 + 200 + 30 + 07 + 327 + 30 + 4,

ey =36 + 303+ x1? 4 301+ 2010 2% + 4B 4+ 307 + 20+ 200 + Aot + 07 + 4+ + 4,
es=x* x4 A0+ 0+ BT S+ A P P x4

Since f = f,f3, with the notation as in Theorem 19, it follows that e, = &, + &, + &5,
ie.,

e = 3 3B 2 3 S P AP 3T+ xS+t P+ A A+ T,

Note that f = fe;, therefore (f) = (e;).
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The following example illustrates Theorem 24.

In R,[x] we have x"—1=fff;y where fi=x+3, f,=2x+2+x+3,

f=x43x2+2x+3. Thus, in FKx], x’—1=fff3 with f, =x+1,
I =x34+x+1, f3 =x>+x2+ 1. Then, E = {6,,0,,0;} where

0, =+ + '+ 2+ +x+ L, O, =+ +x+ 1,0, =25+ + 5 + 1.

Since the nilpotency index of the maximal ideal of R, is t=3 and the
characteristic of the ring F[x]/{(x’ —1) is s=2, from Theorem 23,
E,; = {ej, €565} = {(6))%,(6,)*, (65)"} where

O =BEE+ X+ + P+ x+ 1),
(0,)* =2x° + 20 +3x* + 20 + 32 + 3x + 1,
(03)* =3x° +3x° +2x* + 3 + 2% + 2x + 1.

With the previous information, the idempotent generators of the
ideal C=(1+4+2x+x*+3, u(x—1)) = {f,ug) of the ring R,7
are determined. Observe that f=3f;, g=f and from Theo-
rems 19 and 24, e, =e te = X040+ 2+ % + 20 + 2x, and

€, =x0 4+ +x* +x° +x% + x+2. Thus,

(f,ug) = (e, ue,).

7 Conclusions

This manuscript approaches the study of the finite non-chain Frobenius ring
Ry = Zy + uZy, with u?> = 0 and k > 1 an integer and the number of principal ide-
als is given. Partial results on the ideals generated by two elements are provided.
Cyclic codes over this ring are also considered, and it is shown that these codes can
be described by means of idempotent elements. Examples are included illustrating the
main results of the paper.
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04 de julio de 2025, CDMX

A quien corresponda
Presente

Por medio de la presente se hace constar que el
Dr. Horacio Tapia Recillas
formé parte del comité organizador del 15° Coloquio Nacional de Cédigos, Criptografia y Areas

Relacionadas, celebrado de forma remota del 23 al 25 de junio de 2025.

Se expide la presente constancia al interesado en CDMX, a los 4 dias del mes de julio de 2025.

Dra. Gina Gallegos Garcia Dr. José Noé Gutiérrez Herrera
CIC, IPN Depto. de Matematicas, UAM-I
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El Comité Organizador otorga la presente

CONSTANCIA
a: Horacio Tapia-Recillas

por haber impartido la conferencia

Codigos DNA y el campo de Galois [Fyg

en el 15° Coloquio Nacional de Codigos, Criptografia y Areas Relacionadas, celebrado del 25 al 27 de
junio de 2025, de forma remota desde CDMX, MEXICO

Dra. Gina Gallegos Garcia Dr. José Noé Gutiérrez Herrera
Por el Comité Organizador Por el Comité Organizador
CIC-IPN UAM-Iztapalapa





